• 제목/요약/키워드: micro-nano structure

검색결과 281건 처리시간 0.03초

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.

에탄올 증기 처리를 통한 다공성 탄소 표면 제작 (Fabrication of a Porous Carbon Surface Using Ethanol Vapor Treatment)

  • 임도연;김건휘;안태창
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.244-248
    • /
    • 2022
  • Recently, several studies on the development of superhydrophobic surfaces using various nano-sized carbon-based materials have been conducted. The superhydrophobic surfaces developed using carbon soot have advantages such as low processing cost and remarkable physical and chemical properties. However, their durability is low. To address this problem, in this study, a superhydrophobic surface with high durability and a multilayer structure was fabricated using ethanol vapor treatment. Candle soot was deposited on an aluminum substrate coated with paraffin wax, and a micro-nano multilayer structure with a size of several micrometers was fabricated via ethanol vapor treatment. The fabricated superhydrophobic surface was confirmed to have a contact angle of at least 156° and high durability. Finally, it was confirmed that ethanol vapor not only changed the nanostructure of carbon but also affected the durability of the structure.

Using nano-micro-control technology to improve breathing pressure in vocal music technique teaching innovation

  • Jiayue Cui;Hongliang Zhang
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.239-251
    • /
    • 2023
  • In the present study, we aim to use nanotechnology sensors/actuators to capture pressure and frequency of voice singers and to send signals for improving breathing pressure. In this regard, a circular composite structure having 3 different layers are used. The core layer is nano-composite material reinforced with graphene nanoplatelets. The face sheets are piezo electric materials connected to electrical circuit capable of measuring and applying voltage to the piezoelectric layers. This sensors have extremely smaller size than conventional sensors attached to the neck of singer and, hence, minimizes the influences on the output voice of the singer. A brief theoretical framework are presented for nonlocal strain gradient theory and geometry of the sensor is described in detail. The controlling procedure along with experimental results on 20 amateur and professional singer participants are also presented. The results of the study indicate that the participants could gain benefit from the device for improving their ability in phonation and keeping their frequency at a constant level although they have difficulty in the beginning of the experiment getting used to the device.

Pulse Electrodeposition and Characterization of Ni-Si3N4 Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국표면공학회지
    • /
    • 제43권5호
    • /
    • pp.224-229
    • /
    • 2010
  • $Ni-Si_3N_4$ nano-composite coatings were prepared by pulse current (PC) electrodeposition and direct current (DC) electrodeposition techniques. The micro-structure of the coatings was characterized by scanning electron microscopy (SEM), vickers microhardness, X-Ray Diffraction (XRD) and wear-friction tests. The results showed that the micro-structure and wear performance of the coatings were affected by the electrodeposition techniques. Pulse current electrodeposited $Ni-Si_3N_4$ composite coatings exhibited higher microhardness, smooth surface, and better wear resistance properties as compared to coatings prepared under DC condition. The $Ni-Si_3N_4$ composite coatings prepared at 50 Hz pulse frequency with 10% duty cycles has shown higher codeposition of nano-particles. Consequently, increased microhardness and less plastic deformations occurred in coatings during sliding wear test. The XRD patterns revealed that the increased pulse frequencies changed the preferred (100) nickel crystallite orientations into mixed (111) and (100) orientations.

Characterization of Combined Micro- and Nano-structure Silicon Solar Cells using a POCl3 Doping Process

  • Jeong, Chaehwan;Kim, Changheon;Lee, Jonghwan;Yi, Junsin;Lim, Sangwoo;Lee, Suk-Ho
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.69-72
    • /
    • 2013
  • Combined nano- and micro-wires (CNMWs) Si arrays were prepared using PR patterning and silver-assisted electroless etching. A $POCl_3$ doping process was applied to the fabrication of CNMWs solar cells. KOH solution was used to remove bundles in CNMWs and the etching time was varied from 30 to 240 s. The lowest reflectance of 3.83% was obtained at KOH etching time of 30 s, but the highest carrier lifetime of $354{\mu}s$ was observed after the doping process at 60 s. At the same etching time, a $V_{oc}$ of 574 mV, $J_{sc}$ of $28.41mA/cm^2$, FF of 74.4%, and Eff. of 12.2% were achieved in the CNMWs solar cell. CNMWs solar cells have potential for higher efficiency by improving the post-process and surface-rear side structure.

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

극대면적 UV-NIL 공정에서의 균일 가압 시스템 개발 (The Development of Uniform Pressurizing System for Extremely Large Area UV-NIL)

  • 최원호;신윤혁;여민구;임홍재;신동훈;장시열;정재일;이기성;임시형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1917-1921
    • /
    • 2008
  • Ultraviolet-nanoimprint lithography (UV-NIL) is promising technology for cost effectively defining micro/nano scale structure at room temperature and low pressure. In addition, this technology is fascinating because of it's possibility for high-throughput patterning without complex processes. However, to acquire good micro/nano patterns using this technology, there are some challenges such as uniformity and fidelity of patterns, etc. In this paper, we have focused on uniform contact mechanism and performed contact mechanics analysis. The dimension of the flexible sheet to get adequate uniform contact area has been obtained from contact mechanics simulation. Based on this analysis, we have made a uniform pressurizing device and confirmed its uniform pressurized zone using a pressure sensing paper.

  • PDF

자연에서 배운 마이크로/나노구조물을 이용한 초발수 표면 (Micro/nanostructured Superhydrophobic Surface)

  • 임현의;박준식;김완두
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.244-251
    • /
    • 2009
  • 최근 들어, 자연의 기능성 표면을 모사하여 공학적으로 이용하려는 연구가 전세계적으로 급격히 증가하고 있다. 자연계에 존재하는 표면의 여러 기능을 우리 생활에 응용할 수 있다면, 현재 인류가 직면하고 있는 환경오염, 에너지고갈, 물/식량 부족 등의 문제들을 해결하는데 큰 도움이 될 뿐만 아니라, 우리가 일상생활에 사용하는 많은 제품들의 표면 기능을 고도화시킬 수 있기 때문이다. 이 글에서는 다양한 기능을 가진 자연의 표면 중 마이크로/나노구조물을 이용하여 초발수 특성을 갖는 표면에 대하여 살펴보고 초발수 표면의 이론적인 배경 및 초발수 표면을 구현하기 위한 여러 연구들에 대하여 소개하고자 한다.

Fabrication of Silicon Nanotemplate for Polymer Nanolens Array

  • Cho, Si-Hyeong;Kim, Hyuk-Min;Lee, Jung-Hwan;Venkatesh, R. Prasanna;Rizwan, Muhammad;Park, Jin-Goo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • Miniaturization of lenses has been widely researched by various scientific and engineering techniques. As a result, micro scaled lens structure could be easily achieved from various fabrication techniques; nevertheless it is still challenging to make nano scaled lenses. This paper reports a novel fabrication method of silicon nanotemplate for nanolens array. The inverse structure of nanolens array was fabricated on silicon substrate by reactive ion etching (RIE) process. This technique has a flexibility to produce different tip shapes using different pattern masks. Once the silicon nano-tip array structure is well-defined using an optimized recipe, it is followed by polymer molding to duplicate nanolens array from the template. Finally, the nanostructures formed on silicon nanotemplate and polymer replica were investigated using FE-SEM and AFM measurements. The nano scaled lens can be manufactured from the same template, also using other replication techniques such as imprinting, injection molding and so on.

  • PDF

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF