• Title/Summary/Keyword: micro-elements

Search Result 434, Processing Time 0.028 seconds

A Capacitive Type Humidity Sensor Using a Polyimide Film for Hermeticity Measurement of Micro Packages (마이크로 패키지의 밀폐도 측정을 위한 정전용량형 폴리이미드 습도센서)

  • Kim, Yong-Ho;Kim, Yong-Jun;Kim, Kyung-Il;Kim, Joong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.287-291
    • /
    • 2004
  • A capacitive type humidity sensor has been fabricated using a polyimide film without hydrophobic elements and its characteristics has been evaluated for hermeticity measurement of micro packages. For a highly sensitive humidity sensor, a polyimide film without hydrophobic elements has been synthesized and used instead of using a commercial one in which 7 group elements such as fluorine or chlorine are included. Sensitivity, stability and hysteresis has been performed to characterize the fabricated sensors. The sensitivity defined as normalized percent capacitance change was 0.3751%RH and hysteresis was 0.77% in the range of 10%RH to 90%RH. Maximum deviation from the average capacitance measured for 120 minutes at 50%RH was 0.25%. The proposed humidity sensor can be used for hermeticity measurement of micro packages.

Evaluation of micro jet nozzle using finite elements method (유한요소해석을 이용한 마이크로 분사 노즐 특성 평가)

  • Lim, Dong-Wook;Choi, Doo-Sun;Kim, Tae-min;Park, Jung-Rae;Park, Kyu-Bag;Ham, Hwi-Chan;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • In the drug delivery system industry, the technology with even split injection becomes important for maximizing efficiency and minimizing the side effects. In conventional drug delivery system, infection can occur due to pain and splashing. Also, various applications are impossible due to disposable use, and it is the reason to avoid to use this system because of the complexity of the driving method. Therefore, in this study, a painless drug delivery device is developed for non-pain with electrical insulation breakdown method. Finite elements analysis was used to evaluate the ejection characteristics of drugs according to the shape of the micro ejection nozzle. The effect of the number of holes in the micro nozzle, the length of the nozzle and the inner shape of the nozzle on the drug discharge characteristics were analyzed.

Comparison of Tensile and Impact Properties of Hypo-Eutectoid Steels Containing Micro-Alloying Elements (미량합금 원소가 첨가된 아공석강의 인장 및 충격 특성 비교)

  • Lee, Seung-Yong;Cho, Yun;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In this study tensile and impact properties of three hypo-eutectoid steels containing different micro-alloying elements were investigated in terms of microstructural factors such as pro-eutectoid ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness. Yield point phenomenon appeared in all the steel specimens during tensile testing, and ultimate tensile stress was mainly dependent on pearlite fraction. On the other hand, the refinement of austenite grain size caused by the addition of micro-alloying elements resulted in the increment of ferrite volume fraction and carbon contents in pearlite because of the refinement of pro-eutectoid ferrite grain size. As a result, cementite thickness in pearlite increased and had an effect on deteriorating the low temperature impact toughness.

Optimization of Passive Mixer for Enhanced Mixing in a Micro-channel by Using Lattice Bloltzmann Method (격자 볼츠만 방법을 이용한 미소 채널에서의 혼합효율 증가를 위한 수동형 믹서의 최적화)

  • Han Gyu suk;Byun Sung Joon;Yoon Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.707-715
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method is employed to simulate two-phase flow of low Reynolds number in a micro-channel. The mixing characteristics in a micro-channel is a function of Peclet number. The mixing length increases with the Peclet number. It is found that with the inclusion of static elements at the channel, rapid mixing of two liquids can be achieved, as shown by the results of computer simulations. The enhancement in mixing performance is thought to be caused by the generation of eddies and by lateral velocity component when the mixture flows past static elements. The results indicate that the size of static element has more effect on the mixing than the number of static element.

Measurements of a microchannel flow using micro-PIV

  • Lee Inwon;Choi Jayho;Lee In-Seop
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.44-52
    • /
    • 2001
  • A micro-PIV(particle image velocimetry) measurement has been conducted to investigate flow fields in such microfluidic devices as microchannels and micronozzle. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. Velocity vector fields with a resolution of $6.8\;\times\;6.8{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent molding process. Flow fields in a variety of microchannels as well as micronozzle have been investigated.

  • PDF

The Properties of DSC and DMA for Epoxy Nano-and-Micro Mixture Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.69-72
    • /
    • 2010
  • This study investigates the thermal and mechanical properties of insulation elements through the mixing of epoxy based micro and nano particles. Regarding their thermal properties, differential scanning calorimeter and dynamic mechanical analyser were used to calculate the cross-linking densities for various types of insulation elements. The mechanical properties of the bending strength, the shape and scale parameters, were obtained using the Weibull plot. This study obtained the best results in the scale parameters, at 0.5 phr, for the bending strength of the epoxy nano-and-micro mixture composites.

Recent Advances in Diffractive- and Micro-Optics Technology

  • Morris, G.Michael
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.4-4
    • /
    • 2003
  • Diffractive- and micro-optics technology Provides new degrees of freedom for the design and optimization of optical systems. In this talk emphasis will be placed on recent advances in the design and fabrication of precision, micro- structured optical elements and their applications in the optical telecommunication, vision-care, illumination and display markets. (omitted)

  • PDF

Micro Parts Machining and Injection Molding Technology (마이크로 금형 가공 및 사출성형에 관한 연구)

  • 최두선;제태진;이응숙;신보성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.452-457
    • /
    • 2003
  • As a fundamental study on developing elements with micro shape, micro mold parts machining and experiment of injection molding using it were performed. The ultra precision micro machining system with high functionality was fabricated, and utilized in the machining of micro parts. By using this machining system and micro end-mill tool, a micro circle column structure of high aspect ratio, diameter 60 $\mu\textrm{m}$, height 500 $\mu\textrm{m}$, was fabricated. And a micro lens molds were fabricated by using ball end-mill tool of 300 $\mu\textrm{m}$ diameter and diamond fly-cut tool of 150 $\mu\textrm{m}$ radius. A micro injection molding machine, which is clamping force 1.75 ton, injection capacity 2.8cc, was fabricated for injection molding experiment using micro molds. The injection molding experiment was performed by using the injection molding machine, micro cylinder structures and lens molds. This paper introduces these micro machining system and injection molding machine and demonstrates examples of injection molding using fabricated molds.

  • PDF

Effect of Cooking Methods on Elemental Composition of Pumpkin (Cucurbitaceae spp.) (호박류의 조리방법에 따른 무기질 성분의 변화)

  • Hong, Young Shin;Kim, Kyong Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1195-1204
    • /
    • 2017
  • This study was designed to determine the effects of three cooking methods, boiling, microwave, and steaming, on elemental compositions of green pumpkin, zucchini, and sweet and ripened pumpkin. The cooking methods were carried out at 3, 5, and 10 min. The samples were then dried, crushed, and decomposed by microwave-assisted digestion method. Macro elements were analyzed by Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES), whereas ICP-Mass Spectrometer (ICP-MS) was used for micro elements determination. From the results, macro elements were present in the order of K, P, Ca, Mg, S, Fe, Zn, and Na in all analyzed pumpkins. Among micro elements, Mn, Cu, Rb, and Ba, were present at high levels. For the effects of cooking methods, boiling significantly reduced the concentrations of elements. Cooking time affected concentrations of elements in the same manner with large differences between elemental contents in samples cooked for 5 and 10 min. Regarding micro elements contents, both effects were not significant. Similar elemental compositions with different concentration levels in all pumpkin types were observed. Green pumpkin and ripened pumpkin showed high retention rates of inorganic components upon steaming, and zucchini and sweet pumpkin showed high retention rates upon microwave cooking. Conclusively, cooking method and time affect amounts of residual inorganic ingredients in pumpkin.

Machining Characteristics in Micro Electrochemical Drilling and Simulation (미세 전해 구멍 가공에서의 가공 특성과 시뮬레이션)

  • Kim B.H.;Lee Y.S.;Choi D.K.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1202-1205
    • /
    • 2005
  • Micro hole is one of basic elements for micro device or micro parts. By micro ECM, micro holes less than $50\mu{m}$ in diameter can be machined easily. Machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel. For the micro machining with high resolution, the change of machining gap should be predicted. By using electrochemical principle equations, the change of machining gap was simulated.

  • PDF