• 제목/요약/키워드: micro-dimple shape

검색결과 7건 처리시간 0.027초

탄성중합체 시일 표면의 미세 딤플에 대한 최적설계 (Optimum micro dimple configuration on the elastomer seal surface)

  • 유대원
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.1-10
    • /
    • 2020
  • The seal plays a role in preventing oil leakage when the lip and the rotating shaft come into contact with the fluid and air pressure. Recently, micro dimples or micro pockets are processed and used on the lubrication surfaces of thrust bearings, mechanical bearings, and piston rings. Compared to a smooth surface, micro dimples reduce friction and increase the life of parts. This paper analyzed various kinds of micro dimple shapes on the sealing surface, i.e. circle, rectangle, triangle, and trapezoid. For this purpose, Introduced the design of experiments to work out a micro dimple configuration, unlikely to be damaged from cracks and low in contact stress. As a result, the triangular dimple showed the best results. Optimal factors were dimple size 0.15 mm, dimple depth 0.0383 mm, dimple density 40%, and the maximum equivalent stress was 9.1455 MPa, and the maximum contact pressure was 9.6612 MPa. This paper analyzed the optimal shape of dimples by finite element analysis. As a research project, experiments and comparative analysis of micro dimple shapes are needed.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

탄성중합체 표면의 마이크로 딤플에 의한 발열저감효과 (The Effect of Reduction of Friction Heat by Micro Dimple on the Sliding Surface of Elastomer)

  • 김건완;유명호;이택성
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.847-853
    • /
    • 2013
  • Micro-dimples on sliding surfaces have been investigated to reduce the frictional forces on metal bearing surfaces; however, for an elastomer, such as thermoplastic polyurethane (TPU), this has not been studied. The material properties of an elastomer are affected by temperature, and this can shorten the life of the elastomer. In this paper, micro-dimples were applied on the surface of an elastomer in order to reduce the frictional heating, which was experimentally investigated using pin-on-disk apparatus while the surface temperature was measured. To obtain optimal design parameters, the design of the experiment was applied, and the shape of the section, size, depth and density of micro-dimples were selected as the design parameters. The results show that the size of the dimple is the most important design parameter.

마이크로 R2R 성형에서 주름의 발생 예측과 개선 (Prediction of Wrinkling in Micro R2R Forming and Its Improvement)

  • 민병욱;서원상;김종봉;이혜진;이상훈;김종호
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Recently, with the merits of simplicity, ease of mass production and cost effectiveness, a roll-to-roll (R2R) forming process is tried to be employed in the manufacturing of the circuit board, barrier ribs and other electronic device. In this study, the roll-to-roll process for the forming of micro-pattern in electronic device panel is designed and analyzed. In the preliminary experiments, two major defects, i.e., crack near the dimple wall and wrinkling on outside region of dimple, are found. The study on the crack prevention is carried out in previous works by authors. In this study, the cause of wrinkling and modification of tooling to prevent the wrinkling is studied. The main cause of wrinkling is considered to be the uneven material flow along the rolling direction. To reduce or to retard the wrinkling initiation, a dummy shape on outside the pattern is introduced. From the finite element analysis results, it is shown that the dummy shape can reduce the uneven material flow significantly. Finally the effect of dimensions of the dummy shape on material flow is investigated and the optimum dimensions are found.

Tribology Characteristics of Hexagonal Shape Surface Textured Reduction Gear in Electric Agricultural Vehicle

  • Choi, Wonsik;Pratama, Pandu Sandi;Byun, Jaeyoung;Kwon, Soonhong;Kwon, Soongu;Park, Jongmin;Kim, Jongsoon;Chung, Songwon
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.47-54
    • /
    • 2019
  • An experimental study was conducted on the wear and friction responses in sliding tests of a micro-textured surface on laser pattern (LP) steel as reduction gear material in electric guided vehicle. In this research, the friction characteristics of laser pattern steel under different micro texture density conditions were investigated. The friction tests were carried out at sliding speeds of 0.06 m/s to 0.34 m/s and at normal loads of 2 to 10 N. Photolithography method was used to create the dimples for surface texturing purpose. Four different specimens having different dimple densities of 10%, 12.5%, 15%, and 20% were observed respectively. In this research, friction conditions as shown in Stribeck curve were investigated. Furthermore, the microscopic surface was observed using scanning electron microscope. It was found that the dimple density had a significant role on the friction characteristics of laser pattern steel conditioned as reduction gear material in an agricultural vehicle. The duty number showed that the friction condition was hydrodynamic regime. The best performance was obtained from 12.5% dimple density with lowest friction coefficient achieved at 0.018771 under the velocity of 0.34 m/s and 10N load.

Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구 (A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate)

  • 김인호;이길영;주정민;박경태;천병선
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.