• 제목/요약/키워드: micro-defect

Search Result 220, Processing Time 0.03 seconds

Partial Discharge Characteristics of the XLPE/EPDM Interface in Power Cable Joint (전력케이블 접속재 XLPE/EPDM 계면의 부분방전 특성)

  • Cho, Kyung-Soon;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.780-786
    • /
    • 2007
  • This paper describes the influence on partial discharge characteristics of defects at the model XLPE/EPDM interfaces of power cable joints. The defects of void and copper which could inadvertently be present at the joint interface. We measured ${\Phi}-n,\;{\Phi}-q$ patterns by a computer-aided partial discharge measuring system. Several parameters i, e, maximum discharge $q_{max}$ [pC], average discharge q [pC/cycle], and average angle of discharge ${\Theta}g$ [deg] were found to depend upon the defect type varying applied voltage. As the result of time evaluation, partial discharges are small different at copper defects, but is decreasing obviously about 20 minutes at void defect. It considered that difference of magnitude of total positive discharge of Q+ [pC] and total negative discharge of Q- [pC] is SPMD(swarming pulsive micro discharges).

Solid Solution Limit and Densification of NiO Doped $Pb(Zr_{0.525} Ti_{0.475})O_3$ (NiO 첨가 $Pb(Zr_{0.525} Ti_{0.475})O_3$ 세라믹스의 치밀화의 고용한계)

  • 위성권;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.6
    • /
    • pp.52-58
    • /
    • 1986
  • $Pb(Zr_{0.525} Ti_{0.475})O_3$ piezoelectric ceramics both unmodified and doped with NiO were prepared by the conventional oxide techniques using sintering temperature from 900 to to 125$0^{\circ}C$. The difference in densification process between unmodified and NiO doped PZT ceramics was studied by shrinkage vs. firing temperatures and it was caused by increasing defect concentration in calcining process of NiO doped PZT ceramics. And nickel oxide solubility limit for $Pb(Zr_{0.525} Ti_{0.475})O_3$ ceramics is shown to be at the range from 0.2wt% to 0.5wt% from this defect model micro-structures dielectric and piezolectric properties of Nio doped PZT ceramics.

  • PDF

The Characteristic Evaluation of Electron Beam Welding for Al 6061 alloy with thick-thickness plate (후판 Al 6061합금의 전자빔용접 특성 평가)

  • Jeong In-Cheol;Sim Deok-Nam;Kim Yong-Jae
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.68-70
    • /
    • 2006
  • For the aluminum material of the thick-thickness more than 100mm Penetration depth Electron beam welding is effectively applicable with a characteristic of high energy intensity. But Al 6061 alloy has high crack sensitivity due to minor alloys, which are silicon, magnesium, copper etc. With a sample block of 135mm thickness EBW test was performed in vertical position. As tensile strength has $210{\sim}220N/mm^2$ with weld area broken. Bend test shows low ductility with fracture of partly specimens. Chemical contents of alloys show no difference between weld and base metal. Defect in middle weld area figures out typical hot crack due to low melting materials. Micro structure of weld area has some difference compare to HAZ and base metal. As a result of EBW test for Al 6061 alloy, it shows that weld defect could be occurred even though establishing of optimum weld parameter condition.

  • PDF

Test and Analysis of Triaxially Braided Composite Circular Arch under Three-Point Bending

  • Nega, Biruk F.;Woo, Kyeongsik;Lee, Hansol
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2019
  • In this paper, the buckling behavior of triaxially braided circular arch with monosymmetric open section subjected to three-point bending was studied experimentally and numerically. First, test specimens were manufactured using vacuum assisted resin transfer molding (VARTM). Then the specimen was tested under three-point bending to determine the ultimate buckling strength. Before performing the numerical analysis, effective material properties of the braided composite were obtained through micro-meso scale analysis virtual testing validated with available test results. Then linear buckling analysis and geometrically non-linear post buckling analysis, established to simulate the test setup, were performed to study the buckling behavior of the composite frame. Analysis results were compared with experimentally obtained ones for verification. The effect of manufacturing defects of tow misalignment, irregular surface and resin rich region, and uncertainties during test setup were studied using numerical models. From the numerical analyses performed it was observed that both manufacturing defect and uncertainties had effect on the buckling behavior and strength.

Fundamental Research on Reactivity of Silica Source in the Rapidly Cured Inorganic Micro-Defect-Free(MiDF) Concrete (촉진 양생한 무기계 MiDF 콘크리트에서 실리카질 원료의 반응성에 관한 기초 연구)

  • Choi, Hong-Beom;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.166-173
    • /
    • 2019
  • In this paper, the reaction properties of silica source in the accelerated curing conditions using autoclave and the fundamental properties of inorganic Micro Defect Free(MiDF) concrete using silica source are studied. Studies show that Si ions elution rate from silica source in autoclave curing is higher in amorphous source. In tap water conditions, solids which is source after autoclaved curing show a higher mass reduction in amorphous materials, which is attributed to the higher elution rate of ion. In $Ca(OH)_2$ solution conditions, amorphous materials show higher mass increase, due to increase in C-S-H minerals. From experiment for influence on the properties of MiDF concrete by using nano silica materials, the specimen with silica fume shows an increase in compressive strength and a decrease in absorption depending on replacement rate up to 5.5%, while nano silica with amorphous phase and high-fineness shows a decrease in compressive strength and decrease in the water absorption. The specimen with nano silica increases the pore below 10,000nm, but reduces pore between 10,000 and 100,000nm. The above results show that the porosity and absorption rate of MiDF concrete can be reduced by using amorphous nano-size silica. However, to reduce the pore of 50 to 10,000nm, better dispersion of nano material in the cement matrix will be necessary. We will focus on the this item in the next research.

3-Dimensional Micro-Computed Tomography Study on Bone Regeneration with Silk Fibroin, rh-Bone Morphogenetic Protein Loaded-Silk Fibroin and Tricalcium Phosphate Coated-Silk Fibroin in Rat Calvaria Defect

  • Pang, Eun-O;Park, Young-Ju;Park, Su-Hyun;Kang, Eung-Sun;Kweon, Hae-Yong;Kim, Soeng-Gon;Ko, Chang-Yong;Kim, Han-Sung;Nam, Jeong-Hun;Ahn, Jang-Hun;Chun, Ji-Hyun;Lee, Byeong-Min
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the bone regeneration capacity of silk fibroin (SF) when combined with beta tricalcium phosphate (${\beta}$-tricalcium phosphate [TCP]) and rh-bone morphogenetic protein (BMP) in vivo by micro-computed tomography (CT), soft x-ray, and histological analysis. Methods: A total of 56 critical size defects formed by a trephine bur made on 28 adult female Spague-Dawley rats were used for this study and the defect size was 5.0 mm in diameter. The defects were transplanted with (1) no graft material (raw defect), (2) autogenous bone, (3) SF ($10{\mu}g$), (4) SF-BMP ($10{\mu}g$, $0.8{\mu}g$ each), and (5) SF+${\beta}$-TCP ($10{\mu}g$). At 4 and 8 weeks after operation, the experimental animals were sacrificed. Samples were evaluated with soft x-ray, histological examinations and 3-dimensional micro-CT analysis. Results: In the 3-dimensional micro-CT evaluation, bone volume and bone surface data were higher in the SF-BMP ($12.8{\pm}1.5$, $138.6{\pm}45.0$ each) (P<0.05) and SF-TCP ($12.3{\pm}1.5$, $144.9{\pm}30.9$ each) group than in the SF group ($6.1{\pm}3.3$, $77.2{\pm}37.3$ each) (P<0.05), except for the autogenous group ($15.0{\pm}3.0$, $190.7{\pm}41.4$ each) at 4 weeks. At 8 weeks, SF-BMP ($16.8{\pm}3.5$, $173.9{\pm}34.2$ each) still revealed higher (P<0.05) bone volum and surface, but SF-TCP ($11.3{\pm}1.5$, $1132.9{\pm}52.1$ each) (P=0.5, P=0.2) revealed the same or lower amount compared with the SF group ($13.8{\pm}2.7$, $127.5{\pm}44.8$ each). The % of bone area determined by radiodensity was higher in the SF-TCP ($31.4{\pm}9.1%$) and SF-BMP ($36.2{\pm}16.2%$) groups than in the SF ($19.0{\pm}10.4$) group at the period of 4 weeks. Also, in the histological evaluation, the SF-BMP group revealed lower inflammation reaction, lower foreign body reaction and higher bone healing than the SF group at postoperative 4 weeks and 8 weeks. The SF-TCP group revealed lower inflammation at 4 weeks, but accordingly, as the TCP membrane was absorbed, inflammatory and foreign body reaction are increased at 8 weeks. Conclusion: The current study provides evidence that the silk fibrin can be used as an effective grafted material for tissue engineering bone generation through a combination of growth factor or surface treatment.

Development of bone scaffold using HA(Hydroxyapatite) nano powder (HA(Hydroxyapatite) 나노 입자를 이용한 bone scaffold의 개발)

  • Kim J.Y.;Lee S.J.;Lee J.W.;Kim Shin-Yoon;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.159-160
    • /
    • 2006
  • A novel approach to the manufacture of biocompatible ceramic scaffold for tissue engineering using micro-stereolithography system is introduced. Micro-stereolithography is a newly proposed technology that enables to make a 3D micro structure. The 3D micro structures made by this technology can have accurate and complex shape within a few micron error. Therefore, the application based on this technology can vary greatly in nano-bio fields. Recently, tissue-engineering techniques have been regarded as alternative candidate to treat patients with serious bone defects. So many techniques to design and fabricate 3D scaffolds have been developed. But the imperfection of scaffold such as random pore size and porosity causes a limitation in developing optimum scaffold. So scaffold development with controllable pore size and fully interconnected shape have been needed for a more progress in tissue engineering. In this paper, bone scaffold was developed by applying the micro-stereolithography to the mold technology. The scaffold material used was HA(Hydroxyapatite) nano powder. HA is a type of calcium phosphate ceramic with similar characteristic to human inorganic bone component. The bone scaffold made by HA is expected, in the near future, to be an efficient therapy for bone defect.

  • PDF

A Study on the Micro-Propagation of Landscape-Plants (조경식물의 Micro-Propagation에 관한 연구)

  • 주명칠
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.1
    • /
    • pp.83-94
    • /
    • 1993
  • After coming this century, as the propagative method of plants on a scientific foundation has been accompanied systematically, it has played an important part in the improvement of cultivar. But an existing propagative technique is not a few defects in our tasks and industrial structure which changes every hour and envirnment which undergoes a sudden change. To use developed biological knowledge recently, and existing propagative method which is main axis in sexual reproductive crossing, is increased much in the inside of internal organs by asexual reproductive means which is on a different level, and by, introducing a new character, it improves an inherited character etc. We have observed methods which supplement or replace a defect. These methods are not yet ripe for putting to practical use in the present research phase but convinced that they will offer an epoch-marking turning point.

  • PDF

Quantitative Evaluation of Fatigue Strength using a Surface defective Low Carbon Steel (저탄소강의 표면결개 방의 영향에 의한 피로강도의 정량적 평가)

  • 윤명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.42-49
    • /
    • 1995
  • It is not clearly known how defects or inclusions of a low carbon steel affect a fatigue strength. We study this issue using SM15C materials. The investigation is carried out by a quantitative evaluation, and experimental findings are: (1) a fatigue limit of A series smooth specimen is 205MPa, and that of B, C, D series is 245MPa, 304MPa and 245MPa, respectively. (2) the fatigue limit varies with respects to the stress distribution I the vicinity of a defects and crack. (3) the micro hole creates a half-circular shape crack, while the hole depth is not critical to the fatigue strength, (4) considering the fatigue strength, the hole diameter is more significant than the hole depth, and (5) Fatigue limit of artificially defected specimen is lower than that of a flawless one (5-10%), however, there exist allowance size and depth of defect which don't get to influence at fatigue limit.

  • PDF

A Study on Preparation of Alumina Membranes(2) (알루미나 한외여과막의 제조에 관한 연구(2))

  • 유재근;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.359-366
    • /
    • 1994
  • Tow types of supports were made using $\alpha$-Al2O3 powder and optimum conditions to prepare for supports were provided. Sol solution for coating was synthesized by sol-gel method with aluminum isopropoxide. Supports were coated and heat-treatemented, where the thickness of coating layer was controlled by dipping time. Flux and permeability of alumina membrane were measured by liquid and gas filtration apparatus and these were compared with the provided model. It was confirmed that the coating was done very well without micro~crack and defect.

  • PDF