• Title/Summary/Keyword: micro-cracking

Search Result 171, Processing Time 0.02 seconds

Occurrence of Micro-cracking According to Bagging Paper in 'Mansoo' Pear Fruits (과실 봉지에 따른 배 '만수' 품종의 미세 열과 발생)

  • Choi, Jin-Ho;Yim, Sun-Hee;Kim, Sung-Jong;Lee, Han-Chan;Kwon, YongHee
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • This study was conducted to study the factors inducing micro-cracking and determine proper practices to reduce its occurrence in 'Mansoo' pear fruits. Micro-cracking was observed on ripe fruits. Occurrence of micro-cracking was closely related to sun duration time in August. Micro-cracking occurred severely with shorter sun duration, but weakly with longer sun duration and continuous sunlight. Micro-cracking fruits occurred more frequently in trees with a pergola training system than in those with Y-trellis, but there was no difference between the irrigated and non-irrigated groups. While no micro-cracking was observed without fruit bagging, micro-cracking occurred in fruits with black and yellow outer paper bagging at rates of 62.2 and 17.3%, respectively. Our results suggest that the light condition was the most important cause of micro-cracking because the occurrence of micro-cracking in 'Mansoo' fruits was affected by factors including sun duration, trellis system and fruit bag color. We suggested that micro-cracking could be reduced in 'Mansoo' fruit by optimizing the light conditions with the proper trellis system, bagging color and summer pruning.

An Analytical Method for the Evaluation of Micro-cracking in Concrete Shrinkage Induced (콘크리트의 수축으로 인한 미세균열 발생 평가를 위한 해석적 기법)

  • Song, Young-Chul;Kim, Do-Gyeum;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The majority of research that has been performed on cracking potential of concrete by shrinkage has assumed that concrete acts as a homogeneous material. However, with this approach, it is not able to evaluate the micro-cracking behavior in concrete due to autogenous shrinkage under unrestrained boundary condition (free boundary condition) nor to understand the cracking behavior properly because of the heterogeneous nature of concrete. To better understand the micro-cracking behavior of concrete induced by autogenous shrinkage, series of experiments were performed measuring the length change and acoustic emission energy. As an analytical approach, this research uses an object oriented finite element analysis code (OOF code) to simulate the behavior of the concrete on a meso-scale. The concrete images used in the simulations were directly obtained from mortar samples. From the experiments and simulation results, it was able to better understand the micro-cracking behaviour of concrete due to shrinking of paste phase and internal restraint by aggregates.

Correlation Between Flexural Toughness and Cracking Characteristics of Micro-fiber Reinforced Mortar According to Fiber Contents (마이크로 섬유보강 모르타르의 휨 인성과 균열 특성의 상관관계)

  • Shin, Kyung-Joon;Jang, Kyu-Hyou;Kim, Eui Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.249-257
    • /
    • 2008
  • Various methods have been used to reinforce the cementitious material such as mortar and concrete that have weak tensile strength. Major reinforcing method is to mix matrix with fibers which have strong tensile strength. Recently, micro-fiber reinforced mortar has been studied which removes coarse aggregate and uses micro-fiber with small diameter in order to homogenize the matrix properties and maximize the performance of fiber. Performance of micro-fiber reinforced mortar showing multiple cracking behavior is hardly represented only by the flexural toughness. Therefore, This paper reports the cracking behavior as well as mechanical behavior for various mixtures which have different fiber type and mixture proportions to find the proper parameter representing the cracking characteristic. Correlations between flexural toughness and various cracking characteristics such as cracking area, width and number are explored. As a result, it is found that flexural toughness, volume of fiber and number of cracks are suitable for representing the characteristics of micro-fiber reinforced mortar.

Prediction of Steel Corrosion and Corrosion Cracking in Reinforced Concrete Structures (철근콘크리트 구조물의 철근부식과 부식균열의 발생 예측)

  • 김호진;조호진;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.657-662
    • /
    • 2003
  • In this study. a micro-corrosion model of steel in RC structure is established for micro-structure development in view to micro-mechanics and the model is composed of chloride penetration model and oxygen diffusion model to evaluate for corrosion rate and accumulated corrosion amounts. Also the model is composed of corrosion-cracking model for prediction of corrosion-cracking. The time and space dependent induced corrosion-cracking of RC structures including changes of corrosion rates and concentrations of chloride ion are simulated using the finite element analysis adopted the proposed model Then, results of the analysis are compared with test results for verification.

  • PDF

Development of Method for In-situ Micro-Scale Observation of Stress Corrosion Cracking in High-Temperature Primary Water Environment (원전 고온 1차수 환경에서 응력부식균열의 실시간 마이크로 스케일 관찰 방법 개발)

  • Jung-Ho Shin;Jong-Yeon Lee;Sung-Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • The aim of this study was to develop a new in-situ observation method and instrument in micro-scale to investigate the mechanism of stress corrosion cracking (SCC) initiation of Ni-base alloys in a high temperature water environment of pressurized water reactors (PWRs). A laser confocal microscope (LCM), an autoclave with diamond window view port, and a slow strain-rate tester with primary water circulation loop system were components of the instrument. Diamond window, one of the core components of the instrument, was selected based on its optical, chemical, and mechanical properties. LCM was used to observe the specimen in micro-scale, considering the experimental condition of a high-temperature primary water environment. Using in-situ method and instrument, it is possible to observe oxidation and deformation of specimen surface in micro-scale through the diamond window in a high-temperature primary water in real-time. The in-situ method and instrument developed in this work can be utilized to investigate effects of various factors on SCC initiation in a high-temperature water environment.

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES (탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS (왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • 예병한;원용구
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

First Diagonal Cracking and Ultimate Shear of I-Shaped Reinforced Girders of Ultra High Performance Fiber Reinforced Concrete without Stirrup

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • The first diagonal cracking and ultimate shear load of reinforced girder made of ultra high performance fiber reinforced concrete (UHPFRC) were investigated in this paper. Eleven girders were tested in which eight girders failed in shear. A simplified formulation for the first diagonal cracking load was proposed. An analytical model to predict the ultimate shear load was formulated based on the two bounds theory. A fiber reinforcing parameter was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equation can be used for the first cracking status analysis, while the proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which can also be utilized for numerical limit analysis of reinforced UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

Hydration Model of Ettringite-Gypsum Type Expansive Additive (에트링가이트-석회 복합계 팽창재의 수화반응 모델화)

  • Park Sun Gyu;Noguchi Takahumi;Song Ha Won;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, some attention was particularly given to cracking sensitivity of high performance concrete. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age, and, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. Result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

  • PDF