• Title/Summary/Keyword: micro turning

Search Result 67, Processing Time 0.028 seconds

ENGINEERED SURFACE CONTROL IN TURNING PROCESS

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.24-33
    • /
    • 1995
  • The feasibility of generating controlled surface topographies in single-point conventional turning operations is investigated. First a mathematical model of the surface generation process was developed. Second in order to control the texture of the machined surface a micro-positioning stage and the associated command generation software were designed and built. Experimental examples have shown that surface texture can be precisely controlled and is in good agreement with the theoretical predictions.

  • PDF

A Study on the Evaluation of Stability for Chatter Vibration by Micro Positioning Control in Turning Process (선삭가공에서 미세변위제어에 의한 채터진동의 안정성 판별에 관한 연구)

  • Chung Eui-Sik;Hwang Joon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.49-54
    • /
    • 2004
  • In order to evaluate the stability of chatter vibration in turning precess, the micro-positioning cutting test with artificial tool vibration by piezoelectric actuation were carried out. In experiment, the phase lags between cutting forces and chip thickness variations were measured, and the dimensionless penetration-rate coefficient($\overline{K^*}$) which is the most important parameter on the stability for chatter vibration was calculated. The results show that$\overline{K^*}$ can be applicable to the stability criterion for regenerative chatter vibration.

A Study on the Micro/Meso Machining Using Micro Machine (초소형 공작 기계를 이용한 Micro/Meso 가공)

  • Kim, Jae-Gun;Ko, Tae-Jo;Kim, Hee-Sul;Chung, Byoung-Muk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1793-1797
    • /
    • 2003
  • After the micro turning lathe was developed in the last year by AMR Laboratory in Yeungnam university, a micromilling machine is developed for micro/meso machining. This machine is integrated with PZT-driven micro-sliders, micro-linear encoders, aerostatic spindle which has maximum 150,000 rpm. It is applicable to milling and drilling of micro scale. This paper presents the possibility of micro/meso machining and characteristics of micro end milling process by using micro machine. A machining of micro parts using 0.2 mm flat end mill was achieved by micro-milling machine. Experimental results show the machining capability and positional accuracy of this machine is good enough for machining micro parts.

  • PDF

A Study on the Micro Machining Using Micro Machine (초소형 밀링머신을 이용한 미세절삭 가공)

  • 배영호;고태조;김희술;정병묵;김재건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1203-1206
    • /
    • 2003
  • After the micro turning lathe was developed in the last year by AMR Laboratory, a micro-milling machine is developed for micro machining. This machine is integrated with PZT-driven micro-sliders, micro-linear encoders, air turbine spindle which has maximum 150.000 rpm. It is applicable to milling and drilling machining. This paper shows the possibility of micro machining and characteristics of micro end milling process by using micro machine. A machining of micro barrier ribs using 0.2 mm flat type end mill was achieved by micro-milling machine. As experimental results show the machining capability and positional accuracy of this machine is good enough for machining micro parts.

  • PDF

Characteristics of Surface Roughness in the High Speed Micro Turning of Aluminum Alloy (알루미늄 합금의 고속 미소 선삭에 있어서 표면거칠기 특성)

  • Seong, Chul-Hyun;Kim, Hyeung-Chul;Kim, Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.94-100
    • /
    • 1999
  • This study adopted the ultra precision machining system which was composed of an air bearing spindle, a granite bed, air pad and a linear feeding mechanism. It also applied the cutting experiment on the aluminum alloy. To evaluate the safety of high speed machining, we examined the surface roughness according to the changes of cutting speed and obtained the speed limit. This paper also studied the effect of cutting condition such as feed rates and depths of cut on the surface roughness within the speed limit. This provided practical information regarding ultra precision machining.

  • PDF

Research on the machinability in Micro Machining (초미세가공에서 절삭성 고찰)

  • 정종운;김재건;고태조;김희술;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.99-104
    • /
    • 2004
  • Micro/meso cutting is getting more important in the fields of precision machining technology. A micro-turning lathe is one of parts to consist the Micro Factory. It accepts stepwise motion actuators that are used for feeding system instead of the conventional mechanism. It is consisted of two Piezoelectric ceramics; one is for feeding the slider, and the other is for clamping the slider in the guide way of the body. The linearity and positional accuracy of the actuators are good enough for high precision motion. The spindle unit is operated with DC motor on the top of the slider. The motion is communicated with miniaturized linear encoder attached on each side of axis. A mono crystal diamond tool is used for cutting tool. This micro-lathe has been made a machining experiment to see the characteristics of micro-machining.

  • PDF

Fabrication of Large-area Micro-lens Arrays with Fast Tool Control

  • Noh, Young-Jin;Arai, Yoshikazu;Tano, Makoto;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.32-38
    • /
    • 2008
  • This paper describes a fast tool control (FTC)-based diamond turning process for fabricating large-area high-quality micro-lens arrays. The developed FTC unit has a stroke of $48{\mu}m$ and a resonance frequency of 4.9 kHz. Micro-lens arrays were fabricated using a micro-cutting tool with a nose radius of $50{\mu}m$. The FTC unit was integrated with a force sensor so that the initial position of the micro-cutting tool with respect to the workpiece surface could be detected through monitoring the contacting force. The length and depth of the designed parabolic micro-lens profile were $190{\mu}m$ and $20{\mu}m$, respectively. A micro-lens array was fabricated on a cylinder surface over an area of ${\phi}55 mm{\times}40 mm$.

Development of Machining Technology for Micro Dies and Molds (미세금형제작을 위한 가공기술개발)

  • 이응숙;신영재;강재훈;제태진;이재경;이현용;이상조;최헌종;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1047-1050
    • /
    • 2000
  • As the progress of new industrial products or parts technology, the precise and fine machining technologies are needed more and more. Micro fabrication technology of these products are usally consisted of mechanical machining or MEMS technology. Direct machining by mechanical method is not applicable to mass production. MEMS technology also has several problems such as low mechanical strength, bad surface roughness and difficulty of 3 dimensional machining. In this study, we introduce several micro fabrication technology to make micro molds and dies and our project to develop these machining technology.

  • PDF

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.