• 제목/요약/키워드: micro system technology

검색결과 1,366건 처리시간 0.029초

대면적 가공물의 마이크로 그루빙에서 고속 절삭 깊이 제어를 통한 미세형상의 정밀도 향상 (Improvement of Form Accuracy of Micro-Features on Thin, Large-area Plate using Fast Depth Adjustment in Micro-grooving)

  • 강동배;손성민;이효렬;안중환
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.408-413
    • /
    • 2013
  • Micro-features such as grooves and lenses, which perform optical functions in flat displays, should be manufactured with a good form accuracy because this is directly related to their optical performance. As the size of the display increases, it is very difficult to maintain a high relative accuracy because of the inherent geometric errors such as the waviness of a large-area plate. In this paper, the optical effect of these geometric errors is investigated, and surface-referenced micro-grooving to measure and compensate for such geometric errors on line is proposed to improve the form accuracy of the micro-grooves. A PZT-based fast depth adjustment servo system is implemented in the tool holder to maintain a uniform groove depth in reference to the wavy surface. Through experiments, the proposed method is shown to be an efficient way to produce high-quality micro- grooves on a wavy die surface.

Micro EDM을 이용한 Lab-on-a-chip금형의 미세 패턴 제작에 관한 연구 (A Study on the Micro Pattern Fabrication of Lab-on-a-chip Mold Master using Micro EDM)

  • 신봉철;김규복;조명우;김보현;정우철;허영무
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.17-22
    • /
    • 2011
  • Recently, analyzing system is studying for applying to biomedical engineering field, actively. Micro fluidics control system has been manufactured using LIGA (Lithographie Galvanoformung und Abformung), Etching, Lithography and Laser etc. However, it is difficult that above-mentioned methods are applied to fabrication of precision mold master efficiently because of long processing time and rising cost of equipments. Therefore, in this study, micro EDM and micro WEDG system were developed to analyze machining characteristics with tool wear, surface roughness and process time. Then, optimal machining conditions could be obtained from the results of analysis. As the results, mold master of staggered herringbone mixer which has a high mixing efficiency, one of passive mixer of Lab-on-a-chip, could be fabricated from micro pattern(< 50um) using micro EDM successfully.

Micro/Meso-scale Shapes Machining by Micro EDM Process

  • Kim Young-Tae;Park Sung-Jun;Lee Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.5-11
    • /
    • 2005
  • Among the micro machining techniques, micro EDM is generally used for machining micro holes, pockets, and micro structures on difficult-cut-materials. Micro EDM parameters such as applied voltage, capacitance, peak current, pulse width, duration time are very important to fabricate the tool electrode and produce the micro structures. Developed micro EDM machine is composed of a 3-axis driving system and RC circuit equipped with pulse generator. In this paper, using micro EDM machine, the characteristics of micro EDM process are investigated and it is applied to micro holes, slots, and pockets machining. Through experiments, relations between machined surface and voltages and between MRR and feedrate are investigated. Also the trends of tool wear are investigated in case of hole and slot machining.

Micro-EDM 채널가공에서 초음파 가진의 영향 (Effect of Ultrasonic Vibration on Micro-EDM Channel)

  • 임희성;홍민성
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.421-425
    • /
    • 2016
  • Micro-EDM is one of the recent fine-machining technologies. Micro-EDM is widely used in precision processes because products manufactured via EDM are free from workpiece hardness. However, the debris produced during the process cause many problems such as reduced precision of the process. The first solution of this problem involves using the milling hole process. Micro-EDM hole process involves an electrode moving rapidly in the vertical direction via a servo system to disperse debris. However, this process can cause reduced work efficiency owing to contact between the electrode and workpiece. In this study, ultrasonic vibration is added to micro-EDM channel machining. Ultrasonic vibration removes the debris during machining and enables precision machining. Consequently, a clean work environment for the subsequent processes is maintained.

A Stable Black-Start Strategy for a Stand-Alone DC Micro-Grid

  • Cha, Jae-Hun;Han, Yoon-Tak;Park, Kyung-Won;Oh, Jin-Hong;Choi, Tae-Seong;Ko, Jae-Hun;MAHIRANE, Philemon;An, Jae-Yun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.30-37
    • /
    • 2018
  • Unlike an AC system, a DC system does not cause problems with synchronization, stability, reactive power, system losses, and cost. However, more research is still required for the application of DC Systems. This paper proposes a stable black-start strategy for a stand-alone DC micro-grid, which consists of an energy storage system, photovoltaic generator, wind-turbine generator, diesel generator, and DC loads. The proposed method is very important for avoiding inrush current and transient overvoltage in the power system equipment during restoration after a blackout. PSCAD/EMTDC software was used to simulate, analyze, and verify the method, which was found to be stable and applicable for a stand-alone DC micro-grid.

Bio-MEMS분야의 최근 연구동향 (Recent research trends on Bio-MEMS)

  • 박세광;양주란
    • 센서학회지
    • /
    • 제19권4호
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

A Digitized Decoupled Dual-axis Micro Dynamically Tuned Gyroscope with Three Equilibrium Rings

  • Xia, Dunzhu;Ni, Peizhen;Kong, Lun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.385-395
    • /
    • 2017
  • A new digitized decoupled dual-axis micro dynamically tuned gyroscope with three equilibrium rings (TMDTG) is proposed which can eliminate the constant torque disturbance (CTD) caused by the double rotation frequency of a driving shaft with a micro dynamically tuned gyroscope with one equilibrium ring (MDTG). A mechanical and kinematic model of the TMDTG is theoretically analyzed and the structure parameters are optimized in ANSYS to demonstrate reliability. By adjusting the thickness of each equilibrium ring, the CTD can be eliminated. The digitized model of the TMDTG system is then simulated and examined using MATLAB. Finally, a digitized prototype based on FPGA is created. The gyroscope can be dynamically tuned by adjusting feedback voltage. Experimental results show the TMDTG has good performance with a scale factor of $283LSB/^{\circ}/s$ in X-axis and $220LSB/^{\circ}/s$ in Y-axis, respectively. The scale factor non-linearity is 0.09% in X-axis and 0.13% in Y-axis. Results from analytical models, simulations, and experiments demonstrate the feasibility of the proposed TMDTG.

Inorganic and Organic Nano Materials and Devices

  • Li, G.P.;Bachman, Mark
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.4.1-4.1
    • /
    • 2009
  • The dream of futurists andtechnologists is to build complex, multifunctional machines so small that theycan only be seen with the aid of a microscope. The unprecedented technologyadvancements in miniaturizing integrated circuits on semiconductors, and theresulting plethora of sophisticated, low cost electronic devices demonstratethe impact that micro/nano scale engineering can have when applied only to thearea of electrical and computer engineering. Emerging research efforts indeveloping organic and inorganic nano materials together with using micro/nanofabrication techniques for implementing integrated multifunctional devices hopeto yield similar revolutions in other engineering fields. By cross linking theindividual engineering fields through micro/nano technology, various organicand inorganic materials and miniaturized system devices can be developed thatwill have future impacts in the IT and life science applications. Yet to buildthe complex micromachines and nanomachine of the future, engineering will needto develop the technology capable of seamlessly integrating these materials andsubsystems together at the micro and nano scales. The micromachines of thefuture will be “integrated nanosystems,” complex devices requiring the integration of multiple materials,phenomena, technologies, and functions at the same platform. To develop thistechnology will require great efforts in materials science and engineering, infundamental and applied sciences. In this talk, we will first discuss thenature of micro and nanotechnology research for IT and life sciences, and thenintroduce selected current activities in micro and nanotechnology research fororganic and inorganic materials and devices. The newly developed micro/nanofabrication processes and devices, combined with in-depth scientificunderstandings of materials, can lead to rapid development of next generationsystems for applications in IT and life sciences.

  • PDF

Three Dimensional Shape Measurement of a Micro Fresnel Lens with In-line Phase-shifting Digital Holographic Microscopy

  • Kang, Jeon-Woong;Hong, Chung-Ki
    • Journal of the Optical Society of Korea
    • /
    • 제10권4호
    • /
    • pp.178-183
    • /
    • 2006
  • An in-line phase-shifting digital holographic microscopy system was constructed by inserting a conventional microscope in the object arm of a Mach-Zehnder interferometer. It was used to measure the three dimensional shape of a micro Fresnel lens. It was also shown that both the lateral and the axial resolutions of the in-line phase-shifting system using a self-calibration algorithm were superior to those of the best off-axis system.

기계식 마이크로 머시닝을 이용한 마이크로 형상의 특성과 비용 평가 (Fabrication and Characterization of Micro parts by Mechanical Micro Machining: Precision and Cost Estimation)

  • 강혁진;최운용;안성훈
    • 한국정밀공학회지
    • /
    • 제24권1호
    • /
    • pp.47-56
    • /
    • 2007
  • Recently, demands on mechanical micro machining technology have been increased in manufacturing of micro-scale precision shapes and parts. The main purpose of this research is to verify the accuracy and cost efficiency of the mechanical micro machining. In order to measure the precision and feasibility of mechanical micro machining, various micro features were machined. Aluminum molds were machined by a 3-axis micro stage in order to fabricate microchips with $200{\mu}m$ wide channel for capillary electrophoresis, then the same geometry of microchip was made by injection molding. To evaluate the cost efficiency of various micro manufacturing processes, cost estimation for mechanical micro machining was conducted, and actual costs of microchips fabricated by mechanical micro machining, injection molding, and MEMS (Micro electro mechanical system) were compared.