• Title/Summary/Keyword: micro power generator

Search Result 135, Processing Time 0.02 seconds

A Study on the Rotordynamic Characteristics of the Micro Turbo Generator (터보 방식으로 구동되는 마이크로 파워 시스템의 회전체 동역학적 특성에 관한 연구)

  • Ryu, Keun;Lee, Yong-Bok;Lee, Byoung-Su;Kim, Chang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.109-115
    • /
    • 2004
  • The micro turbo generator is new portable power source based on the Brayton cycle, which consists of a compressor, a turbine, a generator, and a combustion chamber. In this paper, the thermodynamic analysis was performed to find the required condition for hundreds watts power in the micro turbo generator, and also the rotordynamic stability was predicted using the numerical analysis of air foil bearings which support the micro turbo generator. By experimental works, the rotordynamic stability of the micro turbo generator with foil bearings was verified. While various transient dynamic situation, the micro turbo generator had stable performances. From the result, it was demonstrated that air foil bearings could be adapted to the micro turbo generator as a excellent lubrication element.

  • PDF

Design and analysis of vibration micro piezoelectric energy harvesting for wireless sensor nodes (무선 센서 노드용 진동형 마이크로 압전 에너지 하베스팅 설계 및 분석)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.277-277
    • /
    • 2009
  • In this paper, PMPG (Piezoelectric Micro Power Generator) was investigated by ANSYS FEA (Finite Element Analysis) to decrease operating frequency and improve out power. The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Used the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Also, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and confirmed the possibility of ZnO micro power generator for wireless sensor node applications.

  • PDF

Design and analysis of ZnO piezoelectric micro power generators with low frequency (저주파수용 ZnO 압전 마이크로 전원의 설계와 분석)

  • Chung, Gwiy-Sang;Yoon, Kyu-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

Coordinated Droop Control for Stand-alone DC Micro-grid

  • Kim, Hyun-Jun;Lee, Yoon-Seok;Kim, Jae-Hyuk;Han, Byung-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1072-1079
    • /
    • 2014
  • This paper introduces a coordinated droop control for the stand-alone DC micro-grid, which is composed of photo-voltaic generator, wind power generator, engine generator, and battery storage with SOC (state of charge) management system. The operation of stand-alone DC micro-grid with the coordinated droop control was analyzed with computer simulation. Based on simulation results, a hardware simulator was built and tested to analyze the performance of proposed system. The developed simulation model and hardware simulator can be utilized to design the actual stand-alone DC micro-grid and to analyze its performance. The coordinated droop control can improve the reliability and efficiency of the stand-alone DC micro-grid.

Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses (손실을 고려한 500W급 마이크로 가스터빈 발전기용 전동발전기의 요구동력 및 요구효율 선정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • 500W class MTG(Micro turbine generator) operating at 400,000 rpm is under development. From the cycle analysis, it is decided that the self-sustaining speed of MTG is 200,000rpm and the generating speed is 400,000 rpm. Therefore, motor should be designed so that it is able to rotate the rotor up to 200,000rpm and generator should designed so that it is able to generate 500W output at 400,000rpm. First step to design motor/generator is to determine the power and efficiency requirement. Not only the power into the compressor and from the turbine at the operating speed but also the mechanical and electrical losses should be considered in determining the power and efficiency requirement. This study presents the procedure and the results of determining the power and efficiency requirement considering the mechanical and electrical losses depending on the rotating speed which is measured from the experiment.

A study of the micro power generators with a coil and a magnet using vibration of low frequencies (저 진동수에서 코일과 자석을 이용한 초소형 발전기 연구)

  • Lee, Dong-Ho;Kim, Seong-Il;Lee, Yoon-Pyo;Park, Min-Chul
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.5-9
    • /
    • 2006
  • We have fabricated a micro power generator which changes vibrational energy into useful energy. With vibrating a magnet on the surface of a winding coil, the micro power generator produce alternating voltage. We have changed the vibrational frequency from 0.5Hz to 10Hz. AC voltage of $20{\sim}25mV$ was generated at the frequency of 1Hz. When the vibration was 3Hz, AC voltage of 80mV was obtained. We have rectified and stepped up the input voltage using a quadrupler circuit. The voltage was stepped up to 130mV.

  • PDF

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics (CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성)

  • Chung, Gwiy-Sang;Lee, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.

Autonomous Micro-grid Design for Supplying Electricity in Carbon-Free Island

  • Hwang, Woo-Hyun;Kim, Sang-Kyu;Lee, Jung-Ho;Chae, Woo-Kyu;Lee, Je-Ho;Lee, Hyun-Jun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1112-1118
    • /
    • 2014
  • In island and backcountry areas, electrical power is usually supplied by diesel generators. It is difficult for small scale diesel generators to have an economy of scale owing to the usage of fossil fuels to produce electricity. Also, there is a problem of carbon dioxide emissions that brings some environmental pollution to the entire region of the area. For solving those, this paper proposes a design method of autonomous micro-grid to minimize the fossil fuels of diesel generator, which is composed of diesel generator, wind turbine, battery energy storage system and photovoltaic generation system. The proposed method was verified through computer simulation and micro-grid operation system.

A Study on the Converter for MEMS Electrostatic Power Generator (MEMS 정전발전기 개발을 위한 변환소자연구)

  • Kang Hee-Jong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.1-7
    • /
    • 2006
  • This is a preliminary study on the MEMS(Miro Electro Mechanical System) electrostatic power generator. It suggested a converting device to change from the electrostatic to the dynamic electricity. To testify, it used Silvaco simulation tools(Athena and Atlas) and fabricated the converting device. The result of the simulation and test it seems to convert electrostatic into dynamic electricity effectively.

Operation Analysis of a Communication-Based DC Micro-Grid Using a Hardware Simulator

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.313-321
    • /
    • 2013
  • This paper describes the operation analysis results of a communication-based DC micro-grid using a hardware simulator developed in the lab. The developed hardware simulator is composed of distributed generation devices such as wind power, photovoltaic power and fuel cells, and energy storage devices such as super-capacitors and batteries. Whole system monitoring and control was implemented using a personal computer. The power management scheme was implemented in a main controller based on a TMS320F28335 chip. The main controller is connected with the local controller in each of the distributed generator and energy storage devices through the communication link based on a CAN or an IEC61850. The operation analysis results using the developed hardware simulator confirm the ability of the DC micro-grid to supply the electric power to end users.