• Title/Summary/Keyword: micro machining

Search Result 851, Processing Time 0.03 seconds

Micro-Hole Machining Using MEDM According to Machining Depth (미소구멍의 가공 깊이에 따른 미세방전 가공특성)

  • 김재현;김보현;류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.227-232
    • /
    • 2003
  • In order to make a deep and precise micro-hole, electrode wear and clearance between the electrode and the workpiece are important parameters using micro-electrical discharge machining. In this study, experiments were carried out to show the characteristics of electrode wear and radial clearance with respect to the depth of machined hole. Electrode wear varied with respect to the depth of hole. With deeper machined hole, bigger clearance was observed. Also it was found that the diameter of electrode influences machining characteristics of deep holes.

MIMS: Web-based Micro Machining Service (MIMS: 웹기반 마이크로 머시닝 서비스)

  • Chu W.-S.;Ahn S.-H.;Kim D.-S.;Jun C.-S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • Presented in this Paper is a Micro Machining Service .(MIMS) based on the World Wide Web technologies. In order to ensure easy access to the service, the web browsers are used as the user interface. The pan geometry as an STL file is uploaded with process parameter for 3-axis CNC milling. Depending on the predefined user level, novice or expert, the user interface requires different parameters for process planning. An STL-based CAM resides in the server and automatically provides NC codes upon user's request. Tool-paths for scanning and pencil-cut, which are interference-free and precise, are created by the curve-based polyhedral machining method. A couple of sample parts were fabricated by a micro endmill with 127 fm diameter. From the tests, the parts fabricated by scanning followed by pencil-cut resulted in less error(within 2%) than the parts machined only by scanning tool-path.

The improvement of micro-drilling method of SUS430 material (SUS430 소재의 미세홀 가공시 가공방법 개선)

  • Lee K.Y.;Kim H.M.;Park S.S.;Park H.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.237-238
    • /
    • 2006
  • Micro drilling is a very important machining method to produce precise parts or small molds. General macro-program for drilling is a non-efficient method because of many movements to safety height. In this research new macro-program was suggested to raise machining-efficiency. New micro-drilling method caused the much reduction of machining time and the same tool life.

  • PDF

A Study on the Ultrasonic Micro-machining and Measurement System (초음파 초정밀 가공 및 측정시스템에 대한 연구)

  • Ju, Jong-Nam;Han, Dong-Cheol;Park, Hui-Jae;Park, Sang-Sin;Je, Seong-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.133-140
    • /
    • 2002
  • Ultrasonic Machining (USM) is widely used in cutting of non-conductive, brittle workpiece materials such as engineering ceramics. However, USM has a limitation in its application to micro machining because problems are occurred in attaching micro tools to the machine and maintaining high precision. Therefore Micro Ultrasonic Machining (MUSM) with WEDM is proposed in this research. The experiments are produced as the change of shaft diameter and abrasive size.

Optimal Machining Condition of WC-Microshaft Using Electrochemical Machining (텅스텐카바이드 미세축의 전해가공 시 최적가공조건 선정)

  • 최세환;류시형;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.245-249
    • /
    • 2002
  • Tungsten carbide microshaft is used as various micro-tools in MEMS because it has high hardness and good rigidity. In this study, experiments were performed to produce tungsten carbide microshaft using electrochemical machining. $H_2SO_4$solution was used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape and large MRR of workpiece were found. For one-step machining, the immersion depth over 1 mm was selected for avoidance of concentration of electric charge at the tip of the microshaft. The limit diameter with good straightness was shown and an empirical formula for WC-microshaft machining was suggested. By controlling the various machining parameters, a straight microshaft with 30 $\mu\textrm{m}$ diameter, over 1 mm length and under 0.5$^{\circ}$ taper angle was obtained.

  • PDF

Characteristics of High-Aspect-Ratio Ultrasonic Machining of Glass (초음파에 의한 고 세장비 유리가공 특성)

  • 신용주;김헌영;장인배;김병희;전병희
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.608-613
    • /
    • 2002
  • An ultrasonic machining process is efficient and economical means for precision machining of glass and ceramic materials. However, the mechanism of the process with respect to the crack initiation and propagation and the stress development in the ceramic workpiece subsurface arc still not well understood. In this research, we have investigated the basic mechanism of ultrasonic machining of ultrasonic machining of glass by the experimental approach. For this purpose, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During machining experiments, the effects of abrasive characteristics and machining conditions on the surface roughness and the material removal rate are measured and compared.