• Title/Summary/Keyword: micro machining

Search Result 851, Processing Time 0.029 seconds

A Study on the Micro Hole Machining Characteristics in WEDG method (방전 미세구멍가공 특성의 고찰)

  • 정태현;박규율
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.953-956
    • /
    • 1997
  • Micro drilling characteristics by EDM method was investigated. In detail, Micro tool electrode for EDM drilling was machined by use of WEDG method and micro hole was drilled using the machined tool electrode in SUS plate. The machining accuracy and time was compared in a different dielectric fluid. As a result, it was convinced that this method could be utilized as a fabrication technology of micro mold or micro 3 dimensional parts.

  • PDF

Micro Electrochemical Machining of Stainless Steel Using Citric Acid (구연산을 이용한 스테인레스 스틸의 미세 전해가공)

  • Ryu, Shi-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.134-140
    • /
    • 2008
  • Micro electrochemical machining (ECM) is conducted on stainless steel 304 using non-toxic electrolyte of citric acid. Electrochemical dissolution region is minimized by applying a few hundred second duration pulses between the tungsten SPM tip and the work material. ECM characteristics according to citric acid concentration, feeding velocity and electric conditions such as pulse amplitude, pulse frequency, and offset voltage are investigated through a series of experiments. Micro holes of $60{\mu}m$ in diameter with the depth of $50{\mu}m$ and $90{\mu}m$ in diameter with the depth of $100{\mu}m$ are perforated. Square and circular micro cavities are also manufactured by electrochemical milling. This research can contribute to the development of safe and environmentally friendly micro ECM process.

Optimal Design of Micro Machine Tool for Micro Precision Machining (미소가공을 위한 마이크로 공작기계 최적설계)

  • Hwang Joon;Chung Eui-Sik;Liang Steven Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.477-478
    • /
    • 2006
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications.

  • PDF

A Study of Micro De-burring Characteristics using Polymer and $Al_2O_3$ Abrasive (폴리머와 산화알루미나 연마재를 이용한 마이크로 버 제거 특성에 관한 연구)

  • Sohn, Jong-In;Lee, Jeong-Won;Kim, Jun-Ki;Yoon, Gil-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.578-584
    • /
    • 2011
  • In mechanical cutting process, burr was generated at workpiece by cutting tool generally. It is working disturbance during manufacturing process. Besides burr was taken shape relatively large size more micro scale machining than macro scale machining. Many researches have been studied to remove micro burr(de-burring), because it was negative effect for accuracy of machining shape. However, micro de-burring was constrained by burr height, micro feature and so on. In this paper, experimental research was carried out to compare de-burring characteristics of $Al_2O_3$ abrasive and polymer.

Study on Machining High-Aspect Ratio Micro Barrier Rib Array Structures using Orthogonal Cutting Method (2 차원 평판가공법을 이용한 고세장비 미세 격벽어레이구조물 가공)

  • Park, Eun-Suk;Choi, Hwan-Jin;Kim, Han-Hee;Jeon, Eun-Chae;Je, Tae-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1272-1278
    • /
    • 2012
  • The micro barrier rip array structures have been applied in a variety of areas including as privacy films, micro heat sinks, touch panel and optical waveguide. The increased aspect ratio (AR) of barrier rip array structures is required in order to increase the efficiency and performance of these products. There are several problems such as burr, defect of surface roughness and deformation and breakage of barrier rip structure with machining high-aspect ratio micro barrier rip array structure using orthogonal cutting method. It is essential to develop technological methods to solve these problems. The optimum machining conditions for machining micro barrier rip array structures having high-aspect ratio were determined according to lengths ($200{\mu}m$ and $600{\mu}m$) and shape angles ($2.89^{\circ}$ and $0^{\circ}$) of diamond tool, overlapped cutting depths ($5{\mu}m$ and $10{\mu}m$), feed rates (100 mm/s) and three machining processes. Based on the optimum machining conditions, micro barrier rib array structures having aspect ratio 30 was machined in this study.

Fabrication of Micro Structure Using Photo Polymer Mask and Micro Abrasive Jet Machining (Photo Polymer 마스크와 미세입자분사가공을 이용한 미세구조물 제작)

  • Ko T.J.;Park D.J.;Lee I.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1175-1178
    • /
    • 2005
  • Brittle materials, especially single-crystal silicon wafer, are widely used for sensors, IC industry, and MEMS applications. e general machining process of crack easy materials is by chemical agents, but it is hazardous and time consuming. Also, it is difficult to get high aspect ratio micro structure. As an alternative tool, an AJM(Abrasive jet machining) is promising method in terms of high aspect ratio and production cost. In this study, to get more precise detail compared to general AJM, photo polymer mask, SU-8, used in photolithography was applied in AJM. Process parameters such as abrasive diameter, air pressure, nozzle diameter, flow rate of abrasive in AJM and a variety of conditions in spin coating were decided. Finally, micro channel and mixer was fabricated to see the efficiency of the AJM with photo polymer mask.

  • PDF