• Title/Summary/Keyword: micro controller system

Search Result 407, Processing Time 0.044 seconds

Auto Exposure Control System using Variable Time Constants (가변 시상수를 이용한 자동 노출제어 시스템)

  • Kim, Hyun-Sik;Lee, Sung-Mok;Jang, Won-Woo;Ha, Joo-Young;Kim, Joo-Hyun;Kang, Bong-Soon;Lee, Gi-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2007
  • In order to obtain a fine picture, a camera has many convenient functions. Its representative functions are Auto Focus(AF), Auto White Balance(AWB) and Auto Exposure(AE). In this paper, we present the new algorithm of Auto Exposure control system, one of its useful functions The proposed algorithm of Auto Exposure control system is based on IIR Filter with Variable Time Constant. First, in order to establish the standards of exposure control, we compare change of the picture luminance with luminance of an object in the Zone system. Second, we make an ideal characteristic graph of luminance by using the results. Finally, we can find the value of the right exposure by comparing an ideal characteristic graph of the luminance with the value of the current expose of a scene. We can find an appropriate exposure as comparing the ideal characteristic graph of the luminance with current exposure of a scene. In order to find a suitable exposure state, we make use of IIR Filter instead of a conventional method using micro-controller. In this paper, the proposed system has therefore simple structure, we use it for compact image sensor module used in the handheld device.

Development of Vehicle LDW Application Service using AUTOSAR Platform on Multi-Core MCU (멀티코어 상의 AUTOSAR 플랫폼을 활용한 차량용 LDW 응용 서비스 개발)

  • Park, Mi-Ryong;Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.113-120
    • /
    • 2014
  • In this paper, we examine Asymmetric Multi-Processing Environment to provide LDW service. Asymmetric Multi-Processing Environment consists of high-speed MCU to support rapid image processing and low-speed MCU for controlling with other ECU at the control domain. Also we designed rapid image process application and LDW application Software Component(SW-C) according to the development process rule of AUTOSAR. To communicate between two MCUs, timer based polling based IPC was designed. Also to communicate with other ECUs(Electronic Control Units), we designed CAN messages to provide alarm information and receiving CAN message to catch the Turn signal. We confirm the possibility of the various ADAS development using an Asymmetric Multi-Processing Environment and AUTOSAR platform. We also expect providing ISO 26262 functional safety.

Real Time ECG Derived Respiratory Extraction from Heart Rate for Single Lead ECG Measurement using Conductive Textile Electrode (전도성 직물을 이용한 단일 리드 심전도 측정 및 실시간 심전도 유도 호흡 추출 방법에 관한 연구)

  • Yi, Kye-Hyoung;Park, Sung-Bin;Yoon, Hyoung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.335-343
    • /
    • 2006
  • We have designed the system that measure one channel ECG by two electrode and extract real-time EDR with more related resipiration and comportable to subject by using conductive textile. On the assumption that relation between RL electrode and potential measurement electrode is coupled with RC connected model, we designed RL drive output to feedback two electrode for reduction of common mode signal. The conductive textile which was used for two ECG electrode was offered more comfort during night sleep in bed than any other method using attachments. In the method of single-lead EDR, R wave point or QRS interval area could be used for EDR estimation in traditional method, it is, so to speak, the amplitude modulation(AM) method for EDR. Alternatively, R-R interval could be used for frequency modulation(FM) method based on Respiratory Sinus Arrhythmia(RSA). For evaluation of performance on AM EDR and FM EDR from 14 subject, ECG lead III was measured. Each EDR was compared with both temperature around nose(direct measurement of respiration) and respiration signal from thoracic belt(indirect measurement of respiration) on mean squared error(MSE), cross correlation(Xcorr), and Coherence. The upsampling interpolation technique of multirate signal processing is applied to interpolating data instead of cubic spline interpolation. As a result, we showed the real-time EDR extraction processing to be implemented at micro-controller.

A FSK Radio-telemetry System for Monitoring Vital Signs in UHF Band (UHF 대역 FSK에 의한 생체신호 무선 전송장치의 개발)

  • Park D.C.;Lee H.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.255-260
    • /
    • 2000
  • This paper presents a radio-telemetry patient monitor. which is used for intensive cal?e units. emergency and surgical operation rooms to monitor continuously patients' vital signs. The radio-telemetry patient monitor consists of a vital sign acquisition unit. wireless data transmission units and a vital sign-monitoring unit. The vital sign acquisition unit amplifies biological signals, performs analog signal to serial digital data conversion using the one chip micro-controller. The converted digital data is modulated FSK in UHF band using low output power and transmitted to a remote site in door. In comparison with analog modulation. FSK has major advantages to improve performance with respect to noise resistance with fower error and the potential ability to process and Improve quality of the received data. The vital sign-monitoring unit consists of the receiver to demodulate the modulated digital data, the LCD monitor to display vital signs continuously and the thermal head printer to record a signal.

  • PDF

Development of wall climbing robot using vacuum adsorption with legged type movement (진공 흡착과 보행형 이동에 의한 벽면이동 로봇의 개발)

  • Park, Soo-Hyun;Seo, Kyeong-Jun;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.344-349
    • /
    • 2017
  • Wall-climbing robots have been developed for various purposes, such as cleaning skyscraper windows, maintaining large structures, and welding vessels. Conventional wall-climbing robots use movement systems based on wheels or legs. However, wheeled robots suffer from slipping effects, while legged systems require many actuators and control systems for the complex linkage structure, which also increases the weight of the robot. To overcome these disadvantages, we propose a new wall-climbing robot that walks based on gorilla locomotion. The proposed robot consists of a DC drive motor, a vacuum pump for adsorption, and a micro controller for controlling the system. The performance of the robot was experimentally verified on vertical and horizontal flat surfaces. The robot could be used for various functions in industrial sites or disaster areas.

Development of LED Irradiation System for Cell Proliferation (세포증식을 위한 LED 조사 시스템 개발)

  • Cheon, Min-Woo;Park, Yong-Pil;Lee, Ho-Shik;Kim, Tae-Gon;Kim, Young-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.581-582
    • /
    • 2010
  • This paper performed the basic study for developing the Photodynamic Therapy Equipment for medical treatment. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 30 step by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage.

  • PDF

Development and Application of Arduino Based Multi-sensors System for Agricultural Environmental Information Collection - A Case of Hog Farm in Yeoju, Gyeonggi - (농업환경정보 수집을 위한 아두이노 기반 멀티 센서 시스템 개발 및 적용 - 경기 여주시 소재 양돈농가를 사례로 -)

  • Han, Jung-Heon;Park, Jong-Jun
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • The agricultural environment is changing and becoming more advanced due to the influence of the 4th Industrial Revolution. From the basic plan of Rural Informatics to the current level of 2nd generation smart farms aimed at improving productivity using Big data, cloud network and more IoT technology. We are continuing to provide support and research and development. However, many problems remain to be solved in order to supply and settle smart farms in Korea. The purpose of this study is to provide a method of collecting and sharing data on farming environment and to help improve the income and productivity of farmers based on collected data. In the case of hog farm, the multiple sensors for environmental data like temperature, humidity and gases and the network environment for connecting the internet were established. The environment sensor was made using the ESP8266 Node MCU board as micro-controller, DHT22 sensor for temperature and humidity, and MQ series sensors for various gases in the hog pens. The network sensor was applied experimentally for one month and the environmental data of the hog farm was stored on a web database. This study is expected to raise the importance of collecting and managing the agricultural and environmental data, for the next generation farmers to understand the smart farm more easily and to try it by themselves.

The Design of Multi-channel Asynchronous Communication IC Using FPGA (FPGA를 이용한 다채널 비동기 통신용 IC 설계)

  • Ock, Seung-Kyu;Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.28-37
    • /
    • 2010
  • In this paper, the IC (Integrated Circuit) for multi-channel asynchronous communication was designed by using FPGA and VHDL language. The existing chips for asynchronous communication that has been used commercially are composed of one to two channels. Therefore, when communication system with two channels or more is made, the cost becomes high and it becomes complicated for communication system to be realized and also has very little buffer, load that is placed into Microprocessor increases heavily in case of high speed communication or transmission of high-capacity data. The designed IC was improved the function and performance of communication system and reduced costs by designing 8 asynchronous communication channels with only one IC, and it has the size of transmitter/receiver buffer with 256 bytes respectively and consequently high speed communication became possible. To detect errors between communications, it was designed with digital filter and check-sum logic and channel MUX logic so that the malfunction can be prevented and errors can be detected more easily and input/output port regarding each communication channel can be used flexibly and consequently the reliability of system was improved. It was composed and simulated logic of VHDL described by using Cyclone II Series EP2C35F672C8 and QuartusII V8.1 of ALTERA company. In order to show the performance of designed IC, the test was conducted successfully in QuartusII simulation and experiment and the excellency was compared with TL16C550A of TI (Texas Instrument) company and ATmegal28 general-purpose micro controller of ATMEL company that are used widely as chips for asynchronous communication.

Development of an Online Evaluation Model for Traffic Signal Control System (교통신호제어시스템 온라인 평가모형 개발)

  • Go, Gwang-Yong;Lee, Seung-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • There have been a lot of efforts to find more accurate evaluation methods for traffic signal control effectiveness for a long period of time. Nowadays a newly advanced method called HILSS, 'Hardware-in-the-Loop-Simulation System', is used to evaluate the overall traffic control's effectiveness including physical control environments like communication conditions, hardware performance, controller's mechanical operations and so on. In this study, an Online-HILSS model has been developed, which runs on CORSIM(5.0) micro traffic simulation model on-lined to COSMOS. For the verification of the model, three tests are performed as follows; (1) a comparison of TMC's timing plan with the simulated green interval, (2) as a case study, a delay distribution comparison of the online simulation with the CORSIM stand-alone simulation. The result of the first test shows that the model can run the simulation green interval by TMC's timing plan correctly. The result of second test shows that the online simulation of the model brings the same simulation results with the CORSIM offline simulation in case of the same timing plan. These results mean that the online evaluation model could be a reliable tool to measure a real-time signal control effectiveness of a wide area street network with the HILSS method.

Web-based Measurement of ECU Signals on Vehicle using Embedded Linux

  • Choi, Kwang-Hun;Lee, Lee;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-142
    • /
    • 2004
  • In this paper, we present a new method for monitoring of ECU's sensor signals of vehicle. In order to measure the ECU's sensor signals, the interfaced circuit is designed to communicate ECU and the Embedded Linux is used to monitor communication result through Web the Embedded Linux system and this system is said "ECU Interface Part". In ECU Interface Part the interface circuit is designed to match voltage level between ECU and SA-1110 micro controller and interface circuit to communicate ECU according to the ISO, SAE communication protocol standard. Because Embedded Linux does not allow to access hardware directly in application level, anyone who wants to modify any low level hardware must develop device driver. To monitor ECU's sensor signals the most important thing is to match serial level between ECU and ECU Interface Part. It means to communicate correctly between two hardware we need to match voltage and signal level, and need to match baudrate. The voltage of SA-1110 is 0 ${\sim}$ +3.3V and ECU is 0 ${\sim}$ +12V and, ECU's communication Line K does multiple operation so, the interface circuit is used to match voltage and signal level. In Addition to ECU's baudrate is 10400bps, it's not standard baudrate in computer environment. So, we need to develop a device driver to control the interface circuit, and change baudrate. To monitor ECU's sensor signals through web there's a network socket program is working in Embedded Linux. It works as server program and manages user's connections and commands. Anyone who wants to monitor ECU's sensor signals he just only connect to Embedded Linux system with web browser then, Embedded Linux webserver will return the ActiveX webbased measurement software. It works in web browser and inits ECU, as a result it returns sensor signals through web. All the programs are developed with GCC(GNU C Compiler) and, webbased measurement software is developed with Borland C++ Builder.

  • PDF