• Title/Summary/Keyword: micro chamber

Search Result 242, Processing Time 0.03 seconds

Comparative Measurement of Radioactivity with Standard Gamma-ray Ionization Chamber System (표준 감마선 전리함 장치에 의한 방사능 비교 측정)

  • Park, Tae-Soon;Woo, Dong-Ho;Oh, Pil-Jae;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.11-18
    • /
    • 1984
  • A Standard gamma-ray ionization chamber system was developed with a well type ionization chamber and micro current measuring circuit. Micro current was measured by the automatic Townsend balance with stepwise compensation method. For gamma emitting nuclides such as $^{241}Am,\;^{133}Ba,\;^{60}Co,\;^{134}Cs,\;^{137}Cs,\;and\;^{22}Na$ relative calibration factors to $^{226}Ra$ reference source were calculated and detection .efficiency curve was determined as a fudnction of gamma energy.

  • PDF

Characteristics of Thermo-Fluid Flow in Dilution Chamber of Micro-Dilution Tunnel for Diesel Particulate Measurement (디젤매연측정용 마이크로 희석터널의 희석챔버에서의 열유동 특성)

  • 김태권;김성훈;임문혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.90-99
    • /
    • 2002
  • The main purpose of this study lies on the development of micro dilution tunnel based on the Sierra Dilution chamber model. As a primary examination, characteristics of flow and temperature distributions during the steady dilution process in dilution chamber are observed with numerical analysis. The penetration of dilution air through porous tube as well as wall temperature and temperature gradient inside porous tube are examined. The thermophoretic velocity in terms of temperature behavior inside porous tube are defined and examined. Based on the ratio of penetration and thermophoretic velocities, all part of porous tube are shown to be safe from the particulate depositions. However, The inlet portion of porous tube in addition to the portion of impinging of dilution air are marginally safe from the particulate depositions. Generally the safer design against particulate deposition is required in provision f3r steady dilution process and for transient process as well.

Experimentally Investigation on Combustion Phenomena in Micro Combustor for the Application of Power MEMS (초소형 연소기에서의 연소 현상 실험적 연구)

  • 나한비;김세훈;최원영;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The characteristic of constant volume micro combustor was investigated experimentally. The shape of micro combustor was cylindrical and has row aspect ratio or has relatively large diameter compared with chamber height. Diameter and chamber height was varied to investigate the geometric effect of combustor on the flame propagation. Diameter of 15 mm and 7.5 mm was designed while chamber height was designed to be 1mm, 2mm, and 3mm. The effect of initial pressure was also investigated parametrically from 1bar to 3bar. The gas used in this study was stoichiometric mixture of methane and air. The maximum pressure achieved in down scaled combustors was lower than that of conventional combustor because heat loss to wall was dominant as expected. The maximum pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was possible when the specific condition was satisfied. Although the quenching distance of stoichiometric mixture of CH4 and Air is 2.5 mm, the flame could propagate even under quenching distance as the initial pressure increased.

  • PDF

Numerical Investigation of Thermo-Fluid Flow for Improvement of Micro-Dilution Chamber on Particulate Deposition (수치적 열유동 해석을 통한 마이크로 희석챔버의 개선)

  • Kim, Sung-Hoon;Lee, Dong-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.637-645
    • /
    • 2009
  • The main purpose of this study lies on the improvement of micro dilution tunnel based on the typical porous tube type chamber. The characteristics of flow and temperature fields for steady state has been obtained by numerical analysis using FLUENT. Three different geometrical variations of the porous tube; a) increase of thickness at center, b) step increase of thickness at center and downstream, c) tapered increase of thickness, have been proposed. Accordingly results are obtained and compared in terms of penetration velocity and velocity ratio to therrmophoretic velocity for improvement against particulate deposition inside the tube. The penetration velocity and velocity ratio distributions in the upstream portion and portion of impinging of dilution air are apparently shown to be improved for the case of the step and tapered change of porous tube. The tapered change of tube thickness addition are shown to be the most effective among three geometrical changes. In addition, the considerable improvement against deposition are shown that its thickness should be at least 2mm.

Design and Development of Micro Combustor (I) - Combustion Characteristics in Scale-Downed Combustor - (미세 연소기 개발(I) - 소형 연소기 환경에서의 연소 특성 -)

  • Lee, Dae-Hun;Choe, Gwon-Hyeong;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2002
  • Combustion phenomena in a sub-millimeter scale combustor have been investigated. To evaluate scale effect on flame propagation characteristics, a cylindrical combustion chamber with variable depth was built in-house. The combustor was charged with premixed gas of hydrogen and air and ignited electronically. A piezo electric pressure transducer recorded transient pressure after the ignition. Measurements were made at different test conditions specified with chamber depth and initial pressure as parameters. Visual observation was made through a quartz glass window on top side of the combustion chamber using high speed digital video camera. From the pressure data, available work was estimated and compared with energy input required for stable ignition. The preliminary results suggested that the net thermal energy release is sufficient to generate power and enables a combustor of the size in the present study to be used as the energy source of a micro power devices .

Study on the Various Size Dependence of Ionization Chamber in IMRT Measurement to Improve Dose-accuracy (세기조절 방사선치료(IMRT)의 환자 정도관리에서 다양한 이온전리함 볼륨이 정확도에 미치는 영향)

  • Kim, Sun-Young;Lee, Doo-Hyun;Cho, Jung-Keun;Jung, Do-Hyeung;Kim, Ho-Sick;Choi, Gye-Sook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Purpose: IMRT quality assurance(Q.A) is consist of the absolute dosimetry using ionization chamber and relative dosimetry using the film. We have in general used 0.015 cc ionization chamber, because small size and measure the point dose. But this ionization chamber is too small to give an accurate measurement value. In this study, we have examined the degree of calculated to measured dose difference in intensity modulated radiotherapy(IMRT) based on the observed/expected ratio using various kinds of ion chambers, which were used for absolute dosimetry. Materials and Methods: we peformed the 6 cases of IMRT sliding-window method for head and neck cases. Radiation was delivered by using a Clinac 21EX unit(Varian, USA) generating a 6 MV x-ray beam, which is equipped with an integrated multileaf collimator. The dose rate for IMRT treatment is set to 300 MU/min. The ion chamber was located 5cm below the surface of phantom giving 100cm as a source-axis distance(SAD). The various types of ion chambers were used including 0.015cc(pin point type 31014, PTW. Germany), 0.125 cc(micro type 31002, PTW, Germany) and 0.6 cc(famer type 30002, PTW, Germany). The measurement point was carefully chosen to be located at low-gradient area. Results: The experimental results show that the average differences between plan value and measured value are ${\pm}0.91%$ for 0.015 cc pin point chamber, ${\pm}0.52%$ for 0.125 cc micro type chamber and ${\pm}0.76%$ for farmer type 0.6cc chamber. The 0.125 cc micro type chamber is appropriate size for dose measure in IMRT. Conclusion: IMRT Q.A is the important procedure. Based on the various types of ion chamber measurements, we have demonstrated that the dose discrepancy between calculated dose distribution and measured dose distribution for IMRT plans is dependent on the size of ion chambers. The reason is small size ionization chamber have the high signal-to-noise ratio and big size ionization chamber is not located accurate measurement point. Therefore our results suggest the 0.125 cc farmer type chamber is appropriate size for dose measure in IMRT.

  • PDF

Fabrication method and performance evaluation of components of micro solid propellant thruster (마이크로 고체 추진제 추력기 요소의 가공 방법 및 성능 평가)

  • Lee, Jong-Kwang;Park, Jong-Ik;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.225-228
    • /
    • 2007
  • Micro solid propellant thruster is the most feasible for development with current MEMS. Basic components of micro solid propellant thruster are diverging nozzle, micro igniter, combustion chamber, and solid propellant. Micro nozzles and micro chambers were fabricated using photosensitive glass by anisotropic wet etching technique. Micro Pt heaters on glass membrane which ignited solid propellant were developed. Components of thruster were integrated. Successful ignition was observed.

  • PDF

CFD Analysis on the Flow Characteristics of Diffuser/Nozzles for Micro-pumps (마이크로 펌프용 디퓨져/노즐의 유동 특성에 관한 CFD 해석)

  • Kim Donghwan;Han Dong-Seok;Jeong Siyoung;Hur Nahmkeon;Yoon Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.544-551
    • /
    • 2005
  • The flow characteristics have been numerically investigated for various shapes of the diffuser/nozzles which are used for a valveless micro-pump. The important parameters considered in this study are the throat width ($15\~120\mu$m), the taper angle ($3.15\~25.2^{\circ}$), and the diffuser length ( $600\~4,800\mu$m), and the size of the middle chamber ($1\~16mm^2$). To find the optimal values for these parameters, steady state calculations have been performed assuming the constant pressure difference between the inlet and exit of the flow For the taper angle and the throat width, it is found that there exists an optimum at which the net flow rate is the greatest. The optimal taper angle is in the range of $10\~20^{\circ}$ for all the pressure differences; and the throat width indicates an optimal value near $75\mu$m for the case of 35 kPa pressure difference. The net flow rate is also influenced by the size of the middle chamber. With decreasing chamber size, the net flow rate is reduced because of the interference between two streams flowing into the middle chamber. The unsteady pulsating flow characteristics for a micro-pump with a given diffuser/nozzle shape have been also investigated to show the validity of the steady state parametric study.

Performance Study of Micro Monopropellant Thruster with ADN-Based Propellant (ADN 기반 추진제를 적용한 마이크로 단일추진제 추력기 성능 평가)

  • Kim, Juwon;Huh, Jeongmoo;Baek, Seungkwan;Kim, Wooram;Jo, Youngmin;Lee, Doyun;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.757-763
    • /
    • 2017
  • The combustion test of LMP-103S, a propellant based on ADN(Ammonium Dinitramide), was performed with a 50 mN scale micro-thruster. The micro-thruster was made with photosensitive glass using MEMS manufacturing process. $Pt/{\gamma}-Al_2O_3$ was used as a catalyst to decompose LMP-103S. After injecting 90 wt.% hydrogen peroxide into combustion chamber to preheat the catalyst, LMP-103S was injected for the combustion test. As a result, the ignition and combustion of LMP-103S was confirmed in platinum catalyst environment with the combustion chamber temperature going up to $650^{\circ}C$.

  • PDF

Novel Fabrication and Testing of a Bubble-Powered Micropump (새로운 기포동력 마이크로펌프 제작 및 실험)

  • Jung, Jung-Yeul;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1196-1200
    • /
    • 2004
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. In this study, a bubble-powered micropump was fabricated and tested. The micropump consists of two-parallel micro line heaters, a pair of nozzle-diffuser flow controller and a 1 mm in diameter, 400 ${\mu}m$ in depth pumping chamber. The two-parallel micro line heaters with 20 ${\mu}m-width$ and 200 ${\mu}m-length$ were fabricated to be embedded in the silicon dioxide layer of a wafer which serves as a base plate for the micropump. The pumping chamber, the pair of nozzle-diffuser unit and microchannels including the liquid inlet and outlet port were fabricated by etching through another silicon wafer. A glass wafer (thickness of $525{\pm}15$ ${\mu}m$) having two holes of inlet and outlet ports of liquid serve as upper plate of the pump. Finally the silicon wafer of the base plate, the silicon wafer of pumping chamber and the glass wafer were aligned and bonded (Si-Si bonding and anodic bonding). A sequential photograph of bubble nucleation, growth and collapse was visualized by CCD camera. Clearly liquid flow through the nozzle during the period of bubble growth and slight back flow of liquid at the end of collapsing period can be seen. The mass flow rate was found to be dependent on the duty ratio and the operation frequency. As duty ratio increases, flow rate decreases gradually when the duty ratio exceeds 60%. Also as the operation frequency increases, the flow rate of the micropump decreases slightly.

  • PDF