• 제목/요약/키워드: micro bubbles

검색결과 121건 처리시간 0.025초

Experimental Investigation on the Drag Reduction for an Axi-symmetric Body by Micro-bubble and Polymer Solution

  • Yoon, Hyun-Se;Park, Young-Ha;Van, Suak-Ho;Kim, Hyung-Tae;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2004
  • Experiments on friction drag reduction by injecting polymer (Polyethylene oxide) solution or micro-bubbles were carried out in the cavitation tunnel of KRISO. Two different drag reduction mechanisms were applied to a slender axi-symmetric body to measure the total drag reduction. And then the amount of friction drag reduction was estimated under the assumption that the reduction mechanisms were effective only to the friction drag component. As the result of the tests, polymer solution drag reduction up to 23% of the total drag was observed and it corresponds to about 35% of the estimated friction drag of the axi-symmetric body. This result matched reasonably well to that of the flat plate test "(Kim et al, 2003)". The normalization of the controlling parameters was tried at the end of this paper. Micro-bubble drag reduction was within 1% of its total drag. This unexpected result was quite different from that of the flat plate case "(Kim et at, 2003)" The possible reasons were discussed in this paper.

마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성 (Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React)

  • 이승호;양시우;임대호;유동준;이찬기;강경민;강용
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.597-602
    • /
    • 2015
  • 직경이 0.03 m이고 높이가 1.5 m인 마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성을 검토하였다. 마이크로 액적을 운반하는 기체의 속도는 6.0 L/min, 전구체 중 Zn이온의 농도는 0.4 mol/L로 유지하였다. ZnO 입자의 합성을 위한 반응의 온도(973 K~1,273 K)와 마이크로 기포의 유속 (0~0.4 L/min)이 합성된 ZnO 입자의 기공 특성에 미치는 영향을 고찰하였다. 본 연구의 실험범위에서 ZnO 입자의 합성온도는 1,073 K가 합성된 ZnO 입자의 기공을 극대화하는데 최적이었다. 또한, 반응기에서 연속 제조되는 ZnO 입자의 평균크기는 반응온도가 증가함에 따라 감소하였으며 입자의 표면은 점점 매끄럽게 단순화되었다. 반응기 내부에 마이크로 기포를 유입함으로써 유입하지 않는 경우와 비교하여 합성된 ZnO 입자 내부에 기공을 효과적으로 형성시킬 수 있었으며, 평균 BET면적을 58%까지 증가시킬 수 있었다. 마이크로 액적/기포 유동반응기를 사용하여 연속 합성한 ZnO 입자의 평균입도는 반응온도에 따라 $1.25{\sim}1.75{\mu}m$이었다.

열 기포에 의한 고체 박막의 변형 해석 (Deflection of a Thin Solid Structure by a Thermal Bubble)

  • 김호영;이윤표
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.236-242
    • /
    • 2003
  • Thermal bubbles find their diverse application areas in the MEMS (MicroElectroMechanial Systems) technology, including bubble jet printers, microactuators, micropumps, etc.. Especially, microactuators and micropumps, which use a microbubble growing by a controlled heat input, frequently involve mechanical and thermal interaction of the bubble with a solid structure, such as a cantilever beam and a membrane. Although the concept is experimentally verified that an internal pressure of the bubble can build up high enough to deflect a thin solid plate or a beam, the physics of the entire process have not yet been thoroughly explored. This work reports the experimental study of the growth of a thermal bubble while deflecting a thin cantilever beam. A physical model is presented to predict the elastic response of the cantilever beam based on the experimental measurements. The scaling law constructed through this work can provide a design guide for micro- and nano-systems that employ a thermal bubble for their actuation/pumping mechanism.

UV 성형을 통한 마이크로 렌즈 어레이의 제작 (Fabrication of Microlens Array by UV-molding)

  • 김석민;임지석;강신일;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.236-241
    • /
    • 2004
  • UV-molded microlens arrays with high replication quality were fabricated using a parametric design method. It is important to maximize the replication quality, because one can obtain the replicated micro-optical components with desired properties by accurate control of the shape. In the present study, nickel mold inserts for microlens arrays with lenses having diameters between $3\mu\textrm{m}$ and $230\mu\textrm{m}$ were fabricated by electroforming process. An UV-molding system was designed and constructed, a simple technique to avoid micro-air bubbles was first suggested, and the effects of the compression pressure and UV-curing dose on the replication quality of UV-molded microlens arrays with a diameter of $14\mu\textrm{m}$ were examined experimentally. Finally, geometrical and optical properties of the replicated microlens arrays were measured and analyzed.

미세기포 액화산소가 가두리양식장의 수온 및 산소농도에 미치는 영향 (Effect of oxygen micro-bubble for the temperature and oxygen concentrations of fish farming facility)

  • 안나;이정규;이준석;최근형
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.407-418
    • /
    • 2020
  • Mass mortality of mariculture fish due to high summer temperatures is a major issue in the mariculture industry in many coastal waters of Korea, yet measures to mitigate the impact are generally limited. We injected a micro-bubble of liquefied oxygen into the bottom of rockfish cages (about 6-8 m deep) in order to maximize the dispersal of micro-bubbled seawater and reduce fish mortality. The injection of low-temperature oxygen in micro-bubbles lowered the water temperature at the injection area by as much as 1℃ and increased dissolved oxygen concentration by 0.5 ppm. In early August, following a week with persistent high water temperature (above 28.5℃), there was an increase in fish mortality despite the micro-bubble system, which resulted in approximately 7% death of the total introduced fish population. However, this mortality appeared to be much lower than mortality reported in a neighboring mariculture facility (approximately 50% mortality). We also estimated the volume that can be recirculated with pumped seawater using a micro-bubble system. We suggest that this approach of injecting liquefied oxygen through a micro-bubble system may reduce fish mortality during high temperature periods.

마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구 (Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer)

  • 백부근;임근태;김광수;김경열;김유철
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.

고속 교반을 이용한 기-액 혼합 플라즈마방전 시스템의 성능 향상 (Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation)

  • 박영식
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.711-717
    • /
    • 2017
  • Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of $10-16{\mu}m$, the pore size of the diffuser showed little effect on RNO removal.

Estimation of Effects of Underwater Acoustic Channel Capacity Due to the Bubbles in the High Frequency Near the Coastal Area

  • Zhou, Guoqing;Shim, Tae-Bo;Kim, Young-Gyu
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권3E호
    • /
    • pp.69-76
    • /
    • 2008
  • Measurements of bubble size and distribution in the surface layer of the sea, wind speed, and variation of ocean environments were made continually over a four-day period in an experiment conducted in the South Sea of Korea during 17-20 September 2007. Theoretical background of bubble population model indicates that bubble population is a function of the depth, range and wind speed and bubble effects on sound speed shows that sound speed varies with frequency. Observational evidence exhibited that the middle size bubble population fit the model very well, however, smaller ones can not follow the model probably due to their short lifetime. Meanwhile, there is also a hysteresis effect of void fraction. Observational evidence also indicates that strong changes in sound speed are produced by the presence of swarms of micro bubbles especially from 7 kHz to 50 kHz, and calculation results are consistent with the measured data in the high frequency band, but inconsistent in the low frequency band. Based on the measurements of the sound speed and high frequency transmission configuration in the bubble layer, we present an estimation of underwater acoustic channel capacity in the bubble layer.

미세 입자로 충전된 캐비티에서의 열 기포 형성 (Formation of Thermal Bubble from Particle-Filled Microcavity)

  • 정광훈;이헌주;장영수;이윤표;김호영
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.248-255
    • /
    • 2007
  • Thermal bubble formation is a fundamental process in nucleate boiling heat transfer and many microelectromechanical thermal systems. One of the established facts is that heterogeneous nucleation is originated from vapors trapped inside cavities. Based on this, we performed an experimental study on the formation of thermal bubbles from microcavity fabricated by microfabrication technology on a copper plate. The cavity was filled with aluminum particles to enhance thermal bubble formation. We observed the thermal bubble behaviors, such as bubble incipience, diameter, frequency and coalescence during nucleate boiling. The experimental data showed that the superheat required to trigger the bubble formation was significantly reduced when the cavity was filled with microparticles. We found that the initial increase of superheat led to the increase of both the departure diameter and frequency while the further increase of superheat caused multiple bubbles to coalesce resulting in the decrease of departure frequency.

Raman Microscope를 이용한 진사 유약 발색 특성 분석 (Analysis of the Coloration Characteristics of Copper Red Glaze Using Raman Microscope)

  • 어혜진;이병하
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.518-522
    • /
    • 2013
  • This study investigatesthe coloration mechanism by identifying the factor that affects thered coloration of copper red glazesin traditional Korean ceramics. The characteristics of the reduction-fired copper red glaze's sections are analyzed using an optical microscope, Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The sections observed using an optical microscope are divided into domains of surface, red-bubble, and red band. According to the Raman micro spectroscopy analysis results, the major characteristic peak is identified as silicate in all three domains, and the intensity of $Cu_2O$ increases toward the red band. In addition, it is confirmed that the most abundant CuO exists in the glaze bubbles. Moreover, CuO and $Cu_2O$ exist as fine particles in a dispersed state in the surface domain. Thus, Cu combined with oxygen is distributed evenly throughout the copper red glaze, and $Cu_2O$ is more concentrated toward the interface between body and glaze. It is also confirmed that CuO is concentrated around the bubbles. Therefore, it is concluded that the red coloration of the copper red glaze is revealed not only through metallic Cu but also through $Cu_2O$ and CuO.