• Title/Summary/Keyword: miRNA profiling

Search Result 44, Processing Time 0.033 seconds

MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy

  • Orang, Ayla Valinezhad;Barzegari, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.6989-6999
    • /
    • 2014
  • Colorectal cancer (CRC) is one of the major healthcare problems worldwide and its processes of genesis include a sequence of molecular pathways from adenoma to carcinoma. The discovery of microRNAs, a subset of regulatory non-coding RNAs, has added new insights into CRC diagnosis and management. Together with several causes of colorectal neoplasia, aberrant expression of oncomiRs (oncogenic and tumor suppressor miRNAs) in cancer cells was found to be indirectly result in up- or down-regulation of targeted mRNAs specific to tumor promoter or inhibitor genes. The study of miRNAs as CRC biomarkers utilizes expression profiling methods from traditional tissue samples along with newly introduced non-invasive samples of faeces and body fluids. In addition, miRNAs could be employed to predict chemo- and radio-therapy responses and be manipulated in order to alleviate CRC characteristics. The scope of this article is to provide a comprehensive review of scientific literature describing aberrantly expressed miRNAs, and consequently dysregulation of targeted mRNAs along with the potential role of miRNAs in CRC diagnosis and prognosis, as well as to summarize the recent findings on miRNA-based manipulation methods with the aim of advancing in anti-CRC therapies.

Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Ban, Jihye;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1037-1047
    • /
    • 2017
  • Objective: Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. Methods: NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. Results: According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, ggamiR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, ggamiR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. Conclusion: Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.

Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts (쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할)

  • Oh, Myung-Ju;Kim, So-Hyeon;Kim, Ji-Hyun;Jhun, Byung H.
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.772-782
    • /
    • 2020
  • Skeletal muscle differentiation or myogenesis is important to maintain muscle mass and metabolic homeostasis. Muscle-specific microRNAs (miRNAs) are known to play a critical role in skeletal myogenic differentiation. In this study, we examined the expression profiling of miRNAs during myogenic differentiation in rat L6 myoblasts using rat miRNA microarrays. We identified the upregulated expression of miR-128 as well as several well-known myogenic miRNAs, including miR-1, miR-133b, and miR-206. We additionally confirmed the increased expression of miR-128 observed on microarray through quantitative real-time PCR (qRT-PCR), which showed similarly upregulated expression of both primary miR-128 and mature miR-128, consistent with the microarray findings. Furthermore, transfection of miR-128 into rat L6 myoblasts induced gene expression of myogenic markers such as muscle creatine kinase (MCK), myogenin, and myosin heavy chain (MHC). Protein expression of MHC was increased as well. Inhibition of miR-128 by inhibitory peptide nucleic acids (PNAs) blocked the expression of those myogenic markers. In addition, the transfection of miR-128 into rat L6 myoblasts enhanced the phosphorylation of Erk and Akt proteins stimulated by insulin, while simultaneously reversing the inhibited phosphorylation of Erk and Akt due to insulin resistance. These findings suggest that miR-128 may play important roles in myogenic differentiation and insulin signaling.

Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor

  • Sung, Wai-Nam;Kwok, Hoi-Hin;Rhee, Man-Hee;Yue, Patrick Ying-Kit;Wong, Ricky Ngok-Shun
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.477-486
    • /
    • 2017
  • Background: Our previous studies have demonstrated that ginsenoside-Rg1 can promote angiogenesis in vitro and in vivo through activation of the glucocorticoid receptor (GR). Furthermore, microRNA (miRNA) expression profiling has shown that Rg1 can modulate the expression of a subset of miRNAs to induce angiogenesis. Moreover, Rb1 was shown to be antiangiogenic through activation of a different pathway. These studies highlight the important functions of miRNAs on ginseng-regulated physiological processes. The aim of this study was to determine the angiogenic properties of Korean Red Ginseng extract (KGE). Methods and Results: Combining in vitro and in vivo data, KGE at $500{\mu}g/mL$ was found to induce angiogenesis. According to the miRNA sequencing, 484 differentially expressed miRNAs were found to be affected by KGE. Among them, angiogenic-related miRNAs; miR-15b, -23a, -214, and -377 were suppressed by KGE. Meanwhile, their corresponding angiogenic proteins were stimulated, including vascular endothelial growth factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and MET transmembrane tyrosine kinase. The miRNAs-regulated signaling pathways of KGE were then found by Cignal 45-Pathway Reporter Array, proving that KGE could activate GR. Conclusion: KGE was found capable of inducing angiogenesis both in vivo and in vitro models through activating GR. This study provides a valuable insight into the angiogenic mechanisms depicted by KGE in relation to specific miRNAs.

Association of miR-193b Down-regulation and miR-196a up-Regulation with Clinicopathological Features and Prognosis in Gastric Cancer

  • Mu, Yong-Ping;Tang, Song;Sun, Wen-Jie;Gao, Wei-Min;Wang, Mao;Su, Xiu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8893-8900
    • /
    • 2014
  • Dysregulated expression of microRNAs (miRNAs) has been shown to be closely associated with tumor development, progression, and carcinogenesis. However, their clinical implications for gastric cancer remain elusive. To investigate the hypothesis that genome-wide alternations of miRNAs differentiate gastric cancer tissues from those matched adjacent non-tumor tissues (ANTTs), miRNA arrays were employed to examine miRNA expression profiles for the 5-pair discovery stage, and the quantitative real-time polymerase chain reaction (qRTPCR) was applied to validate candidate miRNAs for 48-pair validation stage. Furthermore, the relationship between altered miRNA and clinicopathological features and prognosis of gastric cancer was explored. Among a total of 1,146 miRNAs analyzed, 16 miRNAs were found to be significantly different expressed in tissues from gastric cancer compared to ANTTs (p<0.05). qRT-PCR further confirmed the variation in expression of miR-193b and miR-196a in the validation stage. Down-expression of miR-193b was significantly correlated with Lauren type, differentiation, UICC stage, invasion, and metastasis of gastric cancer (p<0.05), while over-expression of miR-196a was significantly associated with poor differentiation (p=0.022). Moreover, binary logistic regression analysis demonstrated that the UICC stage was a significant risk factor for down-expression of miR-193b (adjusted OR=8.69; 95%CI=1.06-56.91; p=0.043). Additionally, Kaplan-Meier survival curves indicated that patients with a high fold-change of down-regulated miR-193b had a significantly shorter survival time (n=19; median survival=29 months) compared to patients with a low fold-change of down-regulated miR-193b (n=29; median survival=54 months) (p=0.001). Overall survival time of patients with a low fold-change of up-regulated miR-196a (n=27; median survival=52 months) was significantly longer than that of patients with a high fold-change of up-regulated miR-196a (n=21; median survival=46 months) (p=0.003). Hence, miR-193b and miR-196a may be applied as novel and promising prognostic markers in gastric cancer.

Circulating microRNA expression profiling in young obese Korean women

  • Choi, Won Hee;Ahn, Jiyun;Um, Min Young;Jung, Chang Hwa;Jung, Sung Eun;Ha, Tae Youl
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.412-422
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study investigates correlations between circulating microRNAs (miRNAs) and obesity-related parameters among young women (aged 20-30 years old) in Korea. SUBJECTS/METHODS: We analyzed TaqMan low density arrays (TLDAs) of circulating miRNAs in 9 lean (body mass index [BMI] < 25 kg/㎡) and 15 obese (BMI > 25 kg/㎡) women. We also performed gene ontology (GO) analyses of the biological functions of predicted miRNA target genes, and clustered the results using the database for annotation, visualization and integrated discovery. RESULTS: The TLDA cards contain 754 human miRNAs; of these, the levels of 8 circulating miRNAs significantly declined (> 2-fold) in obese subjects compared with those in lean subjects, including miR-1227, miR-144-5p, miR-192, miR-320, miR-320b, miR-484, miR-324-3p, and miR-378. Among them, miR-484 and miR-378 displayed the most significant inverse correlations with BMI (miR-484, r = -0.5484, P = 0.0056; miR-378, r = -0.5538, P = 0.0050) and visceral fat content (miR-484, r = -0.6141, P = 0.0014; miR-378, r = -0.6090, P = 0.0017). GO analysis indicated that genes targeted by miR-484 and miR-378 had major roles in carbohydrate and lipid metabolism. CONCLUSION: Our result showed the differentially expressed circulating miRNAs in obese subjects compared to lean subjects. Although the mechanistic study to reveal the causal role of miRNAs remains, these miRNAs may be novel biomarkers for obesity.

MicroRNA Expression Profiling in Cell and Mouse Models of Fabry Disease to Identify Biomarkers for Fabry Disease Nephropathy (파브리병의 바이오마커 발굴을 위한 파브리 마우스와 세포모델에서의 microRNA 발현 분석)

  • Jung, Namhee;Park, Saeyoung;Jeon, Yeo Jin;Choi, Yoonyoung;Jung, Sung-Chul
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.3
    • /
    • pp.127-137
    • /
    • 2015
  • Purpose: The main aim of this study was to compare and analyze expression profiles of microRNAs (miRNAs) to establish miRNA signature of Fabry nephropathy related epithelial mesenchymal transition (EMT). Methods: Expression profiles of miRNAs in kidney tissue samples and cell lines from normal and Fabry disease mouse model were examined by miRNA expression microarray analysis followed by quantitative real-time polymerase chain reaction analysis (qRT-PCR). Results: In the miRNA expression microarray analysis of Fabry mouse kidney tissues compared to wild type mouse, 5 and 3 miRNAs among 1,247 miRNAs examined were up- and down-regulated, respectively. Among them, miR-149-5p was down-regulated about 2-fold in Fabry kidney samples. The down-regulations of miR-149-5p were observed in kidney tissues of under 35 week-old-Fabry mice. However, this down-regulation was not observed in kidney tissues of 42 week-old Fabry mice. In SV40 MES 13 cells, mouse mesangial cells, treated with globotriaosylsphingosine (lyso-Gb3), miR-149-5p was also downregulated. The down-regulation of miR-149-5p induced up-regulation of its target genes related to EMT. Conclusion: The miRNA expression array and qRT-PCR results show that miR-149-5p expression was decreased in kidney tissues of Fabry mice compared to wild type mice under 35 weeks of age. Along with the observation of miR-149-5p expression in Fabry disease cell models, these results indicate that the down-regulated miR-149-5p were related to the biological response of mesangial cells to lyso-Gb3 and also have influence to the transcriptional up-regulation of its target genes. These results suggest miR-149-5p might play important roles in the Fabry nephropathy.

miRNA-183 Suppresses Apoptosis and Promotes Proliferation in Esophageal Cancer by Targeting PDCD4

  • Yang, Miao;Liu, Ran;Li, Xiajun;Liao, Juan;Pu, Yuepu;Pan, Enchun;Yin, Lihong;Wang, Yi
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.873-880
    • /
    • 2014
  • In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA micro-array was applied to determine the genes that were regulated directly or indirectly by miR-183. 3'UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3'UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3'UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.

Body fluid identification in forensics

  • An, Ja-Hyun;Shin, Kyoung-Jin;Yang, Woo-Ick;Lee, Hwan-Young
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.545-553
    • /
    • 2012
  • Determination of the type and origin of the body fluids found at a crime scene can give important insights into crime scene reconstruction by supporting a link between sample donors and actual criminal acts. For more than a century, numerous types of body fluid identification methods have been developed, such as chemical tests, immunological tests, protein catalytic activity tests, spectroscopic methods and microscopy. However, these conventional body fluid identification methods are mostly presumptive, and are carried out for only one body fluid at a time. Therefore, the use of a molecular genetics-based approach using RNA profiling or DNA methylation detection has been recently proposed to supplant conventional body fluid identification methods. Several RNA markers and tDMRs (tissue-specific differentially methylated regions) which are specific to forensically relevant body fluids have been identified, and their specificities and sensitivities have been tested using various samples. In this review, we provide an overview of the present knowledge and the most recent developments in forensic body fluid identification and discuss its possible practical application to forensic casework.

MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma (미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과)

  • Nam, Jehyun;Kim, Eunkyung;Kim, Jinyoung;Jeong, Dawoom;Kim, Donguk;Kwak, Bomi;Kim, Sang-Woo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-hodgkin lymphoma. Advances in the chemotherapeutic treatment of this disease have improved the outcomes of DLBCL; nonetheless, many patients still die of DLBCL, and therefore, a better understanding of this disease and identification of novel therapeutic targets are urgently required. In a recent gene expression profiling study, PDE (phosphodiesterase) 4B was found to be overexpressed in chemotherapy-resistant tumors. The major function of PDE4B is to inactivate the second messenger cyclic 3',5' monophosphate (cAMP) by catalyzing the hydrolysis of cAMP to 5'AMP. It is known that cAMP induces cell cycle arrest and/or apoptosis in B cells, and PDE4B abolishes cAMP's effect on B cells. However, the mechanism by which PDE4B is overexpressed remains unclear. Here, we show that the aberrant expression of miRNA may be associated with the overexpression of this gene. The PDE4B 3' untranslated region (UTR) has three functional binding sites of miR-23b, as confirmed by luciferase reporter assays. Interestingly, miR-23b-binding sites were evolutionarily conserved from humans to lizards, implying the critical role of PDE4B-miR-23b interaction in cellular physiology. The ectopic expression of miR-2 3b repressed PDE4B mRNA levels and enhanced intracellular cAMP concentrations. Additionally, miR-23b expression inhibited cell proliferation and survival of DLBCL cells only in the presence of forskolin, an activator of adenylyl cyclase, suggesting that miR-23b's effect is via the downregulation of PDE4B. These results together suggest that miR-23b could be a therapeutic target for overcoming drug resistance by repressing PDE4B in DLBCL.