• Title/Summary/Keyword: miR34a

Search Result 200, Processing Time 0.024 seconds

Icariside II Promotes the Differentiation of Adipose Tissue-Derived Stem Cells to Schwann Cells to Preserve Erectile Function after Cavernous Nerve Injury

  • Zheng, Tao;Zhang, Tian-biao;Wang, Chao-liang;Zhang, Wei-xing;Jia, Dong-hui;Yang, Fan;Sun, Yang-yang;Ding, Xiao-ju;Wang, Rui
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.553-561
    • /
    • 2018
  • Icariside II (ICA II) is used in erectile dysfunction treatment. Adipose tissue-derived stem cells (ADSCs) are efficient at improving erectile function. This study aimed to explore the action mechanism of ADSCs in improving erectile function. ADSCs were isolated from the adipose tissues of rats. Cell proliferation was determined using the Cell Counting Kit-8 (CCK-8) assay. The expressions of mRNA and protein were determined separately through qRT-PCR and western blot. The endogenous expressions of related genes were regulated using recombinant plasmids and cell transfection. A Dual-Luciferase Reporter Assay was performed to determine the interaction between miR-34a and STAT3. Rat models with bilateral cavernous nerve injuries (BCNIs) were used to assess erectile function through the detection of mean arterial pressure (MAP) and intracavernosal pressure (ICP). ICA II promoted ADSCs' proliferation and differentiation to Schwann cells (SCs) through the inhibition of miR-34a. Suppressed miR-34a promoted the differentiation of ADSCs to SCs by upregulating STAT3. ICA II promoted the differentiation of ADSCs to SCs through the miR-34a/STAT3 pathway. The combination of ICA II and ADSCs preserved the erectile function of the BCNI model rats. ADSCs treated with ICA II markedly preserved the erectile function of the BCNI model rats, which was reversed through miR-34a overexpression. ICA II promotes the differentiation of ADSCs to SCs through the miR34a/STAT3 pathway, contributing to erectile function preservation after the occurrence of a cavernous nerve injury.

MicroRNA Expression in Leukemia Cell Line(K562 cell) Using Rhus Verniciflua Stokes (건칠(乾漆)을 이용한 K562 만성 골수성 백혈병 세포주에서의 MicroRNA 발현 규명)

  • Choi, Hyun Sook
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.71-78
    • /
    • 2019
  • Objective : The purpose of the study was to identify expression profiling of miRNAs associated with cancers after treating allergen-removed Rhus Verniciflua Stokes and allergen-removed Rhus Verniciflua Stokes fumigaed Angelica gigas on leukemia cell lines. Methods : miRNA expression has been analyzed using miRNA array method through denaturation and hybridization after isolating the total RNA from leukemic cell line treated with 100 ㎍/㎖ of aRVS and aRVS-A each. Microarray expressions were interpreted as 'significant' on miRNAs when decreased less than 0.5 fold or increased more than 1.5 fold compared with the control group. Results : Among 158 miRNAs in total, 32 miRNAs were significantly presented in miRNAs expression. miRNA has been activated with a variety of genes for predicted targets, and the overexpressed miRNAs were categorized according to proliferation and metastasis of cancer in this study. The findings were reported that seven miRNAs (let-7b, miR-193a-5p, 296-3p, 26a, 22, 124a, 92b) showed significant expressions on proliferation and growth, seven miRNAs (miR-193a-5p, 26a, 200c, 183, 124a, 198, 210) presented meaningful expressions on invasion and metastasis, two miRNAs (let-7b, miR-210) were highly expressed on angiogenesis, five miRNAs (let-7b, miR-26a, 181d, 181c, 296-5p) related with apoptosis, and six miRNAs (let-7b, miR-200c, 183, 370, 124a, 191) were associated with prognosis of cancer and early diagnostic factors for cancer. Conclusion : The mechanism of miRNA takes a role in diagnosis, treatment, and prognotic factors for cancer as well. This study suggested that further detailed research on overexpression of specific miRNA should be carried out continuously in the future.

Differential Expression of microRNAs Following Electroacupuncture Applied to ST36 and GB34 in Rat Models of Chronic Pain (족삼리 양릉천 전침 자극 후 흰쥐 통증 모델에서 microRNA의 차등 발현)

  • So-Hee, Kim;Vishnumolakala, Sindhuri;Sungtae, Koo
    • Korean Journal of Acupuncture
    • /
    • v.39 no.4
    • /
    • pp.132-141
    • /
    • 2022
  • Objectives : Some acupoints are commonly utilized to treat a variety of diseases. The acupoints appear to have a wide range of effects caused by several mechanisms. The purpose of this study is to investigate into the potential role of microRNAs (miRNAs) in the multipotent effects of individual acupoint stimulation. Methods : We examined the miRNA expressions in the dorsal root ganglia (DRG) of neuropathic or inflammatory pain rats following ST36 and GB34 electroacupuncture (EA) stimulation. Neuropathic pain was induced by L5 spinal nerve ligation. Inflammatory pain was induced by knee joint injection of Complete Freund's adjuvant (CFA). EA was given under gaseous anesthesia with the same parameters (1mA, 2Hz, 30 min) in 5 consecutive days. Pain behaviors and miRNA expressions were analyzed. Results : In rats with neuropathic and inflammatory pain, EA treatments significantly enhanced the paw withdrawal threshold and weight-bearing force. After nerve injury, 36 miRNAs were upregulated in the DRG of neuropathic rats, while EA downregulated 10 of them. Furthermore, 14 miRNAs were downregulated following nerve damage, while one was increased by EA. 15 miRNAs were increased in the DRG of inflammatory rats following CFA injection, while 5 were downregulated by EA. Furthermore, 17 miRNAs were downregulated following CFA injection, while 7 were increased by EA. The miRNAs rno-miR-335, rno-miR-381-5p, rno-miR-1306-3p, and rno-miR-1839-3p were regulated by EA in both models. Conclusions : In two pain models, EA applied to ST36 and GB34 regulated miRNA expression differently. There appeared to be both acupoint-specific and non-specific miRNAs, and miRNA regulation of differential protein expression may modulate a variety of EA mechanisms.

Evaluation of MiR-34 Family and DNA Methyltransferases 1, 3A, 3B Gene Expression Levels in Hepatocellular Carcinoma Following Treatment with Dendrosomal Nanocurcumin

  • Chamani, Fatemeh;Sadeghizadeh, Majid;Masoumi, Mahbobeh;Babashah, Sadegh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.219-224
    • /
    • 2016
  • Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver making up more than 80 percent of cases. It is known to be the sixth most prevalent cancer and the third most frequent cause of cancer related death worldwide. Epigenetic regulation constitutes an important mechanism by which dietary components can selectively activate or inactivate target gene expression. The miR-34 family members including mir-34a, mir-34b and mir-34c are tumor suppressor micro RNAs, which are expressed in the majority of normal tissues. Several studies have indicated silencing of miR-34 expression via DNA methylation in multiple types of cancers. Bioactive nutrients like curcumin (Cur) have excellent anticarcinogenic activity and minimal toxic manifestations in biological systems. This compound has recently been determined to induce epigenetic changes. However, Cur is lipophilic and has a poor systemic bioavailability and poor absorption. Its bioavailability is increased through employing dendrosome nanoparticles. The aim of the current study was to investigate the effect of dendrosomal nanocurcumin (DNC) on expression of mir-34 family members in two HCC cell lines, HepG2 and Huh7. We performed the MTT assay to evaluate DNC and dendrosome effects on cell viability. The ability of DNC to alter expression of the mir-34 family and DNA methyltransferases (DNMT1, DNMT3A and 3B) was evaluated using semi-quantitative and quantitative PCR. We observed the entrance of DNC into HepG2 and Huh7 cells. Gene expression assays indicated that DNC treatment upregulated mir34a, mir34b and mir34c expression (P<0.05) as well as downregulated DNMT1, DNMT3A and DNMT3B expression (P<0.05) in both HepG2 and Huh7 cell lines. DNC also reduced viability of Huh7 and HepG2 cells through restoration of miR-34s expression. We showed that DNC could awaken the epigenetically silenced miR-34 family by downregulation of DNMTs. Our findings suggest that DNC has potential in epigenetic therapy of HCC.

Regulatory Network Analysis of MicroRNAs and Genes in Neuroblastoma

  • Wang, Li;Che, Xiang-Jiu;Wang, Ning;Li, Jie;Zhu, Ming-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7645-7652
    • /
    • 2014
  • Neuroblastoma (NB), the most common extracranial solid tumor, accounts for 10% of childhood cancer. To date, scientists have gained quite a lot of knowledge about microRNAs (miRNAs) and their genes in NB. Discovering inner regulation networks, however, still presents problems. Our study was focused on determining differentially-expressed miRNAs, their target genes and transcription factors (TFs) which exert profound influence on the pathogenesis of NB. Here we constructed three regulatory networks: differentially-expressed, related and global. We compared and analyzed the differences between the three networks to distinguish key pathways and significant nodes. Certain pathways demonstrated specific features. The differentially-expressed network consists of already identified differentially-expressed genes, miRNAs and their host genes. With this network, we can clearly see how pathways of differentially expressed genes, differentially expressed miRNAs and TFs affect on the progression of NB. MYCN, for example, which is a mutated gene of NB, is targeted by hsa-miR-29a and hsa-miR-34a, and regulates another eight differentially-expressed miRNAs that target genes VEGFA, BCL2, REL2 and so on. Further related genes and miRNAs were obtained to construct the related network and it was observed that a miRNA and its target gene exhibit special features. Hsa-miR-34a, for example, targets gene MYC, which regulates hsa-miR-34a in turn. This forms a self-adaption association. TFs like MYC and PTEN having six types of adjacent nodes and other classes of TFs investigated really can help to demonstrate that TFs affect pathways through expressions of significant miRNAs involved in the pathogenesis of NB. The present study providing comprehensive data partially reveals the mechanism of NB and should facilitate future studies to gain more significant and related data results for NB.

Role of microRNAs in myogenesis and their effects on meat quality in pig - A review

  • Iqbal, Ambreen;Jiang, Ping;Ali, Shaokat;Gao, Zhen;Liu, Juan;Jin, Zi Kang;Pan, Ziyi;Lu, Huixian;Zhao, Zhihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1873-1884
    • /
    • 2020
  • The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.

ssc-miR-185 targets cell division cycle 42 and promotes the proliferation of intestinal porcine epithelial cell

  • Wang, Wei;Wang, Pengfei;Xie, Kaihui;Luo, Ruirui;Gao, Xiaoli;Yan, Zunqiang;Huang, Xiaoyu;Yang, Qiaoli;Gun, Shuangbao
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2021
  • Objective: microRNAs (miRNAs) can play a role in a variety of physiological and pathological processes, and their role is achieved by regulating the expression of target genes. Our previous high-throughput sequencing found that ssc-miR-185 plays an important regulatory role in piglet diarrhea, but its specific target genes and functions in intestinal porcine epithelial cell (IPEC-J2) are still unclear. We intended to verify the target relationship between porcine miR-185 and cell division cycle 42 (CDC42) gene in IPEC-J2 and to explore the effect of miR-185 on the proliferation of IPEC-J2 cells. Methods: The TargetScan, miRDB, and miRanda software were used to predict the target genes of porcine miR-185, and CDC42 was selected as a candidate target gene. The CDC42-3' UTR-wild type (WT) and CDC42-3'UTR-mutant type (MUT) segments were successfully cloned into pmirGLO luciferase vector, and the luciferase activity was detected after co-transfection with miR-185 mimics and pmirGLO-CDC42-3'UTR. The expression level of CDC42 was analyzed using quantitative polymerase chain reaction and Western blot. The proliferation of IPEC-J2 was detected using cell counting kit-8 (CCK-8), methylthiazolyldiphenyl-tetrazolium bromide (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays. Results: Double enzyme digestion and sequencing confirmed that CDC42-3'UTR-WT and CDC42-3'UTR-MUT were successfully cloned into pmirGLO luciferase reporter vector, and the luciferase activity was significantly reduced after co-transfection with miR-185 mimics and CDC42-3'UTR-WT. Further we found that the mRNA and protein expression level of CDC42 were down-regulated after transfection with miR-185 mimics, while the opposite trend was observed after transfection with miR-185 inhibitor (p<0.01). In addition, the CCK-8, MTT, and EdU results demonstrated that miR-185 promotes IPEC-J2 cells proliferation by targeting CDC42. Conclusion: These findings indicate that porcine miR-185 can directly target CDC42 and promote the proliferation of IPEC-J2 cells. However, the detailed regulatory mechanism of miR-185/CDC42 axis in piglets' resistance to diarrhea is yet to be elucidated in further investigation.

Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells

  • Zhou, Jue-Yu;Ma, Wen-Li;Liang, Shuang;Zeng, Ye;Shi, Rong;Yu, Hai-Lang;Xiao, Wei-Wei;Zheng, Wen-Ling
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.593-598
    • /
    • 2009
  • Cell cycle progression is regulated by both transcriptional and post-transcriptional mechanisms. MicroRNAs (miRNAs) emerge as a new class of small non-coding RNA regulators of cell cycle as recent evidence suggests. It is hypothesized that expression of specific miRNAs oscillates orderly along with cell cycle progression. However, the oscillated expression patterns of many candidate miRNAs have yet to be determined. Here, we describe miRNA expression profiling in double-thymidine synchronized HeLa cells as cell cycle progresses. Twenty-five differentially expressed miRNAs were classified into five groups based on their cell cycle-dependent expression patterns. The cyclic expression of six miRNAs (miR-221, let-7a, miR-21, miR-34a, miR-24, miR-376b) was validated by real-time quantitative RT-PCR (qRT-PCR). These results suggest that specific miRNAs, along with other key factors are required for maintaining and regulating proper cell cycle progression. The study deepens our understanding on cell cycle regulation.

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.

Resilience as a Moderator and Mediator of the Relationship between and Emotional Labor and Job Satisfaction among Nurses working in ICUs (중환자실 간호사의 감정노동과 직무만족도 관계에서 회복탄력성의 조절 및 매개효과)

  • Byeon, Mi Lim;Lee, Yun Mi;Park, Hyo jin
    • Journal of Korean Critical Care Nursing
    • /
    • v.12 no.3
    • /
    • pp.24-34
    • /
    • 2019
  • Purpose : The purpose of this study was to identify the moderating and mediating effects of resilience in the relationship between emotional labor and job satisfaction among nurses working in intensive care units (ICUs). Method : The participants were 144 ICU nurses from three university hospitals. Data were collected using structured questionnaires and analyzed by t-test, ANOVA, $Scheff{\acute{e}}$ test, Pearson correlation coefficients, and multiple regression analysis, using SPSS 25.0. The mediating effect of resilience in the relationship between emotional labor and job satisfaction was analyzed by multiple regression analysis according to Baron and Kenny's procedure. Results : Statistically significant negative correlations were found between emotional labor and resilience (r=-.21, p<.014) and between emotional labor and job satisfaction (r=-.34, p<.001). A significant positive correlation was found between resilience and job satisfaction (r=.31 p<.001). A partial mediating effect by resilience was found between emotional labor and job satisfaction (Z=-2.11, p=.034), but no moderating effect was found. Conclusion : To improve the job satisfaction of ICU nurses, evaluation of their emotional labor, resilience, and interventions are necessary to alleviate emotional labor and improve resilience.