DOI QR코드

DOI QR Code

Role of microRNAs in myogenesis and their effects on meat quality in pig - A review

  • Iqbal, Ambreen (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Jiang, Ping (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Ali, Shaokat (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Gao, Zhen (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Liu, Juan (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Jin, Zi Kang (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Pan, Ziyi (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Lu, Huixian (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University) ;
  • Zhao, Zhihui (Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University)
  • Received : 2020.05.11
  • Accepted : 2020.08.16
  • Published : 2020.12.01

Abstract

The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.

Keywords

References

  1. United Nations. World Population Prospects 2019. New York, USA: United Nations; 2019.
  2. Picard B, Berri C, Lefaucheur L, Molette C, Sayd T, Terlouw C. Skeletal muscle proteomics in livestock production. Brief Funct Genomics 2010;9:259-78. https://doi.org/10.1093/bfgp/elq005
  3. Picard B, Lefaucheur L, Berri C, Duclos MJ. Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev 2002; 42:415-31. https://doi.org/10.1051/rnd:2002035
  4. Karlsson AH, Klont RE, Fernandez X. Skeletal muscle fibres as factors for pork quality. Livest Prod Sci 1999;60:255-69. https://doi.org/10.1016/S0301-6226(99)00098-6
  5. Merks JWM. One century of genetic changes in pigs and the future needs. BSAP Occas Publ 2000;27:8-19. https://doi.org/10.1017/S1463981500040498
  6. Latorre MA, Pomar C, Faucitano L, Gariepy C, Methot S. The relationship within and between production performance and meat quality characteristics in pigs from three different genetic lines. Livest Sci 2008;115:258-67. https://doi.org/10.1016/j.livsci.2007.08.013
  7. Newcom DW, Stalder KJ, Baas TJ, Goodwin RN, Parrish FC, Wiegand BR. Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J Anim Sci 2004;82:2264-8. https://doi.org/10.2527/2004.828 2264x
  8. Ryu YC, Choi YM, Lee SH, et al. Comparing the histochemical characteristics and meat quality traits of different pig breeds. Meat Sci 2008;80:363-9. https://doi.org/10.1016/j.meatsci.2007.12.020
  9. Zhou B, Liu HL, Shi FX, Wang JY. MicroRNA expression profiles of porcine skeletal muscle. Anim Genet 2010;41:499-508. https://doi.org/10.1111/j.1365-2052.2010.02026.x
  10. Siengdee P, Trakooljul N, Murani E, et al. Pre- and post-natal muscle microRNA expression prof les of two pig breeds differing in muscularity. Gene 2015;561:190-8. https://doi.org/10.1016/j.gene.2015.02.035
  11. Redshaw Z, Sweetman D, Loughna PT. The effects of age upon the expression of three miRNAs in muscle stem cells isolated from two different porcine skeletal muscles. Differentiation 2014;88:117-23. https://doi.org/10.1016/j.diff.2014.12.001
  12. Hou X, Tang Z, Liu H, Wang N, Ju H, Li K. Discovery of microRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One 2012;7:e52123. https://doi.org/10.1371/journal.pone.0052123
  13. Tang Z, Yang Y, Wang Z, Zhao S, Mu Y, Li K. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Sci Rep 2015;5:15544. https://doi.org/10.1038/srep15544
  14. Mai M, Jin L, Tian S, et al. Deciphering the microRNA transcriptome of skeletal muscle during porcine development. Peer J 2016;4:e1504. https://doi.org/10.7717/peerj.1504
  15. Nielsen M, Hansen JH, Hedegaard J, et al. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim Genet 2010;41:159-68. https://doi.org/10.1111/j.1365-2052.2009.01981.x
  16. Liu X, Trakooljul N, Hadlich F, Murani E, Wimmers K, Ponsuksili S. MicroRNA-mRNA regulatory networking fine-tunes the porcine muscle fiber type, muscular mitochondrial respiratory and metabolic enzyme activities. BMC Genomics 2016;17:531. https://doi.org/10.1186/s12864-016-2850-8
  17. Sang I, Jung C, Hye K, Seo Y, Hwan D. Cloning and characterization of microRNAs from porcine skeletal muscle and adipose tissue. Mol Biol Rep 2010;37:3567-74. https://doi.org/10.1007/s11033-010-0005-6
  18. Bai L, Liang R, Yang Y, et al. MicroRNA-21 Regulates PI3K/Akt/mTOR signaling by targeting $TGF{\beta}I$ during skeletal muscle development in pigs. PLoS One 2015;10:e0119396. https://doi.org/10.1371/journal.pone.0119396
  19. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 2007;102:306-13. https://doi.org/10.1152/japplphysiol.00932.2006
  20. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38:228-33. https://doi.org/10.1038/ng1725
  21. Xie SS, Huang TH, Shen Y, et al. Identification and characterization of microRNAs from porcine skeletal muscle. Anim Genet 2010;41:179-90. https://doi.org/10.1111/j.1365-2052.2009.01991.x
  22. Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 2006;175:77-85. https://doi.org/10.1083/jcb.200603039
  23. Huang TH, Zhu MJ, Li XY, Zhao SH. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One 2008;3:e3225. https://doi.org/10.1371/journal.pone.0003225
  24. McDaneld GT, Smith TPL, Doumit ME, et al. MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics 2009;10:77. https://doi.org/10.1186/1471-2164-10-77
  25. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006;174:677-87. https://doi.org/10.1083/jcb.200603008
  26. Sheng X, Wang L, Ni H, et al. Comparative analyses between skeletal muscle mirnaomes from large white and min pigs revealed microRNAs associated with postnatal muscle hypertrophy. PLoS One 2016;11:e0156780. https://doi.org/10.1371/journal.pone.0156780
  27. Arnold H-H, Braun T. 4 Genetics of muscle determination and development. Anim Reprod Sci 1999;48:129-64. https://doi.org/10.1016/S0070-2153(08)60756-5
  28. Chen J, Wei W, Xiao X, Zhu M, Fan B, Zhao S. Expression analysis of miRNAs in porcine fetal skeletal muscle on days 65 and 90 of gestation. Asian-Australas J Anim Sci 2008;21: 954-60. https://doi.org/10.5713/ajas.2008.70521
  29. Rehfeldt C, Fiedler I, Dietl G, Ender K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest Prod Sci 2000;66:177-88. https://doi.org/10.1016/S0301-6226(00)00225-6
  30. Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011;138:2401-15. https://doi.org/10.1242/dev.040972
  31. Buckingham M, Montarras D, Relaix F, et al. Pax3 and Pax7 mark a major population of muscle progenitor cells that contribute to skeletal muscle formation and regeneration. In: Neuromuscular disorders. Oxford, UK: Pergamon-Elsevier Science Ltd; 2006. pp. S48-S48.
  32. Bailey P, Holowacz T, Lassar AB. The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol 2001;13:679-89. https://doi.org/10.1016/S0955-0674(00)00271-4
  33. Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. https://doi.org/10.1016/j.bone.2015.02.028
  34. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 2000;50:500-9. https://doi.org/10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7
  35. Choi YM, Kim BC. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livest Sci 2009;122:105-18. https://doi.org/10.1016/j.livsci.2008.08.015
  36. Warner RD, Greenwood PL, Pethick DW, Ferguson DM. Genetic and environmental effects on meat quality. Meat Sci 2010;86:171-83. https://doi.org/10.1016/j.meatsci.2010.04.042
  37. Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009;21:452-60. https://doi.org/10.1016/j.ceb.2009. 04.009
  38. Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B. Distinct expression of muscle-specific MicroRNAs (myomirs) in brown adipocytes. J Cell Physiol 2009;218:444-9. https://doi.org/10.1002/jcp.21621
  39. Rooij EV, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet 2008;24:159-166. https://doi.org/10.1016/j.tig.2008.01.007
  40. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051-60. https://doi.org/10.1038/sj.emboj.7600385
  41. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9. https://doi.org/10.1038/nature01957
  42. Hutvagner G, MaLachian J, Pasquinelli AE, Balint E, Tuschi T, Zamore PD. A Cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834-8. https://doi.org/10.1126/science.1062961
  43. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-40. https://doi.org/10.1016/j.cell.2005.10.022
  44. Du T, Zamore PD. microPrimer: The biogenesis and function of microRNA. Development 2005;132:4645-52. https://doi.org/10.1242/dev.02070
  45. Lee Rosalind C RLF, Ambrost and V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843-54. https://doi.org/10.1016/0092-8674(93)90529-Y
  46. Pasquinelli EA, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000;408:86-9. https://doi.org/10.1038/35040556
  47. Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, et al. Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics 2010; 11:S6. https://doi.org/10.1186/1471-2164-11-S1-S6
  48. Ahn HW, Morin RD, Zhao H, et al. MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol Hum Reprod 2010;16:463-71. https://doi.org/10.1093/molehr/gaq017
  49. Coutinho LL, Matukumalli LK, Sonstegard TS, et al. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiol Genomics 2007;29:35-43. https://doi.org/10.1152/physiolgenomics.00081.2006
  50. Caiment F, Charlier C, Hadfield T, Cockett N, Georges M, e Baurain D. Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Res 2010;20:1651-62. https://doi.org/10.1101/gr.108787.110
  51. Galio L, Droineau S, Yeboah P, et al. MicroRNA in the ovine mammary gland during early pregnancy: Spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics 2013;45:151-61. https://doi.org/10.1152/physiolgenomics.00091.2012
  52. Ambros V. The functions of animal microRNAs. Nature 2004; 431:350-5. https://doi.org/10.1038/nature02871
  53. Williams AH, Liu N, Rooij E, Olson EN. MicroRNA control of muscle development and disease. Curr Opin Cell Biol 2009; 21:461-9. https://doi.org/10.1016/j.ceb.2009.01.029
  54. Xie SS, Huang TH, Shen Y, et al. Identification and characterization of microRNAs from porcine skeletal muscle. Anim Genet 2010;41:179-90. https://doi.org/10.1111/j.1365-2052.2009.01991.x
  55. Luo W, Nie Q, Zhang X. MicroRNAs involved in skeletal muscle differentiation. J Genet Genomics 2013;40:107-16. https://doi.org/10.1016/j.jgg.2013.02.002
  56. Schiaffino S, Reggiani C. Fiber types in Mammalian skeletal muscles. Physiol Rev 2011;91:1447-531. https://doi.org/10.1152/physrev.00031.2010
  57. Guller I, Russell AP. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J Physiol 2010;588:4075-87. https://doi.org/10.1113/jphysiol.2010.194175
  58. Li Y, Xu Z, Li H, Xiong Y, Zuo B. Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci 2010;6:350-60. https://doi.org/10.7150/ijbs.6.350
  59. Liu Y, Li M, Ma J, et al. Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Mol Biol 2013;14:7. https://doi.org/10.1186/1471-2199-14-7
  60. Muroya S, Taniguchi M, Shibata M, et al. Profiling of differentially expressed microRNA and the bioinformatic target gene analyses in bovine fast- and slow-type muscles by massively parallel sequencing. J Anim Sci 2013;91:90-103. https://doi.org/10.2527/jas.2012-5371
  61. Chen X, Zhao C, Dou M, et al. Deciphering the miRNA transcriptome of Rongchang pig longissimus dorsi at weaning and slaughter time points. J Anim Physiol Anim Nutr (Berl). 2020;104:954-64. https://doi.org/10.1111/jpn.13314
  62. Gan Z, Rumsey J, Hazen BC, et al. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J Clin Invest 2013;123:2564-75. https://doi.org/10.1172/JCI67652
  63. Kim JM, Lim KS, Hong JS, Kang JH, Lee YS, Hong KC. A polymorphism in the porcine miR-208b is associated with microRNA biogenesis and expressions of SOX-6 and MYH7 with effects on muscle fibre characteristics and meat quality. Anim Genet 2015;46:73-77. https://doi.org/10.1111/age.12255
  64. Chen, Jian-fu, Tao Y, Li J, Deng Z, Yan Z, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 2010;190:867-79. https://doi.org/10.1083/jcb.200911036
  65. Kassar-duchossoy L, Giacone E, Gayraud-morel B, Jory A, Gomes D, Tajbakhsh S. Pax3 / Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 2005;19:1426-31. https://doi.org/10.1101/gad.345505
  66. Zammit PS, Relaix F, Nagata Y, et al. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 2006;119: 1824-32. https://doi.org/10.1242/jcs.02908
  67. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 2006;103:8721-6. https://doi.org/10.1073/pnas.0602831103
  68. Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 2006;34:5863-71. https://doi.org/10.1093/nar/gkl743
  69. Yang Y, Sun W, Wang R, et al. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Mol Biol 2015;16:4. https://doi.org/10.1186/s12867-015-0035-7
  70. Backs J, Worst BC, Lehmann LH, et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 2011;195:403-15. https://doi.org/10.1083/jcb.20110 5063
  71. Lu L, Zhou L, Chen EZ, et al. A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 2012;7:e27596. https://doi.org/10.1371/journal.pone.0027596
  72. Goljanek-Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Munsterberg A. Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. J Cell Sci 2012;125:3590-600. https://doi.org/10.1242/jcs.101758
  73. Tang Z, Liang R, Zhao S, Wang R, Huang R, Li K. CNN3 is regulated by microRNA-1 during muscle development in pigs. Int J Biol Sci 2014;10:377-85. https://doi.org/10.7150/ijbs.8015
  74. Hong J, Noh S, Lee J, Kim J, Hong K, Lee YS. Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fi ber type composition and miR-1 expression. Gene 2012; 506:211-6. https://doi.org/10.1016/j.gene.2012.06.050
  75. Zhang S, Chen X, Huang Z, et al. Effects of MicroRNA-27a on myogenin expression and Akt/FoxO1 signal pathway during porcine myoblast differentiation. Anim Biotechnol 2018;29:183-9. https://doi.org/10.1080/10495398.2017.1348 357
  76. Hou L, Xu J, Jiao Y, et al. MiR-27b promotes muscle development by inhibiting MDFI expression. Cell Physiol Biochem 2018;46:2271-83. https://doi.org/10.1159/000489595
  77. Hou L, Xu J, Li H, et al. MiR-34c represses muscle development by forming a regulatory loop with Notch1. Sci Rep 2017; 7:9346. https://doi.org/10.1038/s41598-017-09688-y
  78. Zuo J, Wu F, Liu Y, et al. MicroRNA transcriptome profile analysis in porcine muscle and the effect of miR-143 on the MYH7 gene and protein. PLoS One 2015;10:e0124873. https://doi.org/10.1371/journal.pone.0124873
  79. Zhao S, Zhang J, Hou X, et al. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci 2012;8:459-69. https://doi.org/10.7150/ijbs.3821
  80. Zhu L, Hou L, Ou J, et al. MiR-199b represses porcine muscle satellite cells proliferation by targeting. Gene 2019;691:24-33. https://doi.org/10.1016/j.gene.2018.12.052
  81. Ren RM, Liu H, Zhao SH, Cao JH. Targeting of miR-432 to myozenin1 to regulate myoblast proliferation and differentiation. Genet Mol Res 2016;15:gmr15049313. http://dx.doi.org/10.4238/gmr15049313
  82. Lee SH, Kim JM, Ryu YC, Ko KS. Effects of Morphological characteristics of muscle fibers on porcine growth performance and pork quality. Korean J Food Sci Anim Resour 2016;36:583-93. https://doi.org/10.5851/kosfa.2016.36.5.583
  83. Lee SH, Joo ST, Ryu YC. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci 2010;86: 166-70. https://doi.org/10.1016/j.meatsci.2010.04.040
  84. Wen W, Chen X, Huang Z, et al. Prokaryotic expression and purification of porcine Sox6. Turk J Biol 2016;40:915-21. https://doi.org/10.3906/biy-1507-115
  85. Connor F, Wright E, Denny P, Koopman P, Ashworth A. The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res 1995;23:3365-72. https://doi.org/10.1093/nar/23.17.3365
  86. Quiat D, Voelker KA, Pei J, et al. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci USA 2011;108:10196-201. https://doi.org/10.1073/pnas.1107413108
  87. Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009;17:662-73. https://doi.org/10.1016/j.devcel.2009.10.013
  88. Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007;316:575-9. https://doi.org/10.1126/science.1139089
  89. Rooij E, Quiat D, Johnson BA, et al. Article a family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009;17:662-73. https://doi.org/10.1016/j.devcel.2009.10.013
  90. Wang XY, Chen XL, Huang ZQ, et al. MicroRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression. Animal 2017;11:2268-74. https://doi.org/:10.1017/S1751731117001008
  91. Maehata Y, Takamizawa S, Ozawa S, et al. Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol 2007;26:371-81. https://doi.org/10.1016/j.matbio.2007.01.005
  92. Bittinger F, Schepp C, Brochhausen C, et al. Remodeling of peritoneal-like structures by mesothelial cells: Its role in peritoneal healing. J Surg Res 1999;82:28-33. https://doi.org/10.1006/jsre.1998.5449
  93. Stevenson K, Kucich U, Whitbeck C, Levin RM, Howard PS. Functional changes in bladder tissue from type III collagen-deficient mice. Mol Cell Biochem 2006;283:107-14. https:// doi.org/10.1007/s11010-006-2388-1
  94. Yang S, Li WS, Dong F, et al. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. J Cell Mol Med 2014;18:2092-102. https://doi.org/10.1111/jcmm.12368
  95. Villarreal G, Oh DJ, Kang MH, Rhee DJ. Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork. Invest Ophthalmol Vis Sci 2011;52:3391-7. https://doi.org/10.1167/iovs.10-6165
  96. Wang Y, Zhang X, Li H, Yu J, Ren X. The role of miRNA-29 family in cancer. Eur J Cell Biol 2013;92:123-8. https://doi.org/10.1016/j.ejcb.2012.11.004
  97. Bao X, Zeng Y, Wei S, et al. Developmental Changes of Col3a1 mRNA expression in muscle and their association with intramuscular collagen in pigs. J Genet Genomics 2007;34:223-8. https://doi.org/10.1016/S1673-8527(07)60023-X
  98. Scollan ND, Price EM, Morgan SA, Huws SA, Shingfield KJ. Can we improve the nutritional quality of meat? Proc Nutr Soc 2017;76:603-18. https://doi.org/10.1017/S0029665117001112
  99. Liu L, Qian K, Wang C. Discovery of porcine miRNA-196a/b may influence porcine adipogenesis in longissimus dorsi muscle by miRNA sequencing. Anim Genet 2017;48:175-81. https://doi.org/10.1111/age.12520
  100. Pietruszka A, Jacyno E, Kawecka M, Biel W. The relation between intramuscular fat level in the longissimus muscle and the quality of pig carcasses and meat. Ann Anim Sci 2015;15:1031-41. https://doi.org/10.1515/aoas-2015-0046
  101. Du J, Xu Y, Zhang P, et al. MicroRNA-125a-5p affects adipocytes proliferation, differentiation and fatty acid composition of porcine intramuscular fat. Int J Mol Sci 2018;19:501. https://doi.org/10.3390/ijms19020501
  102. Katsumata M, Kobayashi H, Ashihara A, Ishida A. Effects of dietary lysine levels and lighting conditions on intramuscular fat accumulation in growing pigs. Anim Sci J 2018;89: 988-93. https://doi.org/10.1111/asj.13019
  103. Madeira MS, Lopes PA, Costa P, Coelho D, Alfaia CM, Prates JAM. Reduced protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes. Animal 2017;11:2094-102. https://doi.org/10.1017/S17517 31117000921
  104. Chen F-F, Wang Y-Q, Tang G-R, et al. Differences between porcine longissimus thoracis and semitendinosus intramuscular fat content and the regulation of their preadipocytes during adipogenic differentiation. Meat Sci 2019;147:116-26. https://doi.org/10.1016/j.meatsci.2018.09.002
  105. DeVol DL, McKeith FK, Bechtel PJ, Novakofski J, Shanks RD, Carr TR. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J Anim Sci 1988; 66:385-95. https://doi.org/10.2527/jas1988.662385x
  106. Zhang W, Song Q, Wu F, et al. Evaluation of the four breeds in synthetic line of Jiaxing Black Pigs and Berkshire for meat quality traits, carcass characteristics, and flavor substances. Anim Sci J 2019;90:574-82. https://doi.org/10.1111/asj.13169
  107. Xu K, Ji M, Huang X, Peng Y, Wu W, Zhang J. Differential regulatory roles of MicroRNAs in porcine intramuscular and subcutaneous adipocytes. J Agric Food Chem 2020;68:3954-62. https://doi.org/10.1021/acs.jafc.9b08191
  108. Sun Y, Wang S, Liu H, et al. Profiling and characterization of miRNAs associated with intramuscular fat content in Yorkshire pigs. Anim Biotechnol 2020;31:256-63. https://doi.org/10.1080/10495398.2019.1573191
  109. Wang W, Li X, Ding N, et al. miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4. BMC Genet 2020;21:33. https://doi.org/10.1186/s12863-020-0836-7
  110. Sun Y, Qin J, Liu S, et al. $PDGFR{\alpha}$ regulated by miR-34a and FoxO1 promotes adipogenesis in porcine intramuscular preadipocytes through Erk signaling pathway. Int J Mol Sci 2017;18:2424. https://doi.org/10.3390/ijms18112424
  111. Zhang Q, Cai R, Tang G, Zhang W, Pang W. MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-$\beta$ and NF-${\kappa}B$ signal pathways in porcine intramuscular preadipocytes. J Anim Sci Biotechnol 2020 Jun 30 [Epub]. https://doi.org/10.21203/rs.3.rs-38947/v1
  112. Li H, Chen X, Guan L, et al. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-$\alpha$ (TNF-$\alpha$) in the porcine model. PLoS One 2013;8:e71568. https://doi.org/10. 1371/journal.pone.0071568 https://doi.org/10.1371/journal.pone.0071568
  113. Zhang Z, Gao Y, Xu MQ, et al. miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene 2019; 681:45-51. https://doi.org/10.1016/j.gene.2018.09.046
  114. Ning C, Li G, You L, et al. MiR-185 inhibits 3T3-L1 cell differentiation by targeting SREBP-1. Biosci Biotechnol Biochem 2017;81:1747-54. https://doi.org/10.1080/09168451.2017.13 47485
  115. Chen F, Xiong Y, Peng Y, et al. miR-425-5p inhibits differentiation and proliferation in porcine intramuscular preadipocytes. Int J Mol Sci 2017;18:2101. https://doi.org/10.3390/ijms18102101
  116. Dang HQ, Xu G, Hou L, et al. MicroRNA-22 inhibits proliferation and promotes differentiation of satellite cells in porcine skeletal muscle. J Integr Agric 2020;19:225-33. https://doi.org/10.1016/S2095-3119(19)62701-2

Cited by

  1. Systematic Identification and Comparison of the Expressed Profiles of lncRNAs, miRNAs, circRNAs, and mRNAs with Associated Co-Expression Networks in Pigs with Low and High Intramuscular Fat vol.11, pp.11, 2021, https://doi.org/10.3390/ani11113212