• Title/Summary/Keyword: miR-9

Search Result 779, Processing Time 0.026 seconds

Physical Habitat Modeling in Dalcheon Stream Using Fuzzy Logic (퍼지논리를 이용한 달천의 물리서식처 모의)

  • Jung, Sang-Hwa;Jang, Ji-Yeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.229-242
    • /
    • 2012
  • This study presents a physical habitat modeling of adult Zacco platypus in a reach of the Dalcheon Stream located downstream of the Goesaan Dam. CASiMiR model is used to estimate habitat suitability index based on the fuzzy logic. Results are compared with those from River2D model, which uses habitat preference curve for habitat suitability index. Hydraulic data simulated by River2D are used as input data for CASiMiR model after verification against field measurements. The result shows that the habitat suitability of the adult Zacco platypus is maximum around the riffle area located upstream of the bend. CASiMiR and River2D estimate the maximum weighted usable areas at the discharge rates of 7.23 $m^3/s$ and 9.0 $m^3/s$, respectively. Overall comparison of the two models employed in this study indicates that CASiMiR model overestimates the weighted usable area by 0.3~25.3% compared with River2D model in condition of drought flow (Q355), low flow (Q275), normal flow (Q185), and average-wet flow (Q95).

L-Phenylalanine Production by Regulatory Mutants of Excherichia coli K-12 (Escherichia coli K-12 대사조절 변이주에 의한 L-페닐알라닌 생산)

  • Lee, Sae-Bae;Park, Chung;Won, Chan-Hee;Choi, Duk-Ho;Lim, Bun-San
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.174-179
    • /
    • 1990
  • In order to overproduce L-phenylalanine, various kind of regulatory mutants were isolated from parental Escherichia coli K-12. MWEC 83 Producing 7.4g/l of L-phenylalanine has been derived as a tyrosine and tryptophan double auxotrophic mutant. To produce L-phenylalanine without adding L-tyrosine and L-tryptophan, revertant strain MWEC 101 was isolated from MWEC 83. Further various analogues and valine resistant mutants were isolated from MWEC 101. MWEC 101-5 was the most excellent strain that produced 17.9g/l of L-phenylalanine after having been cultivated for 54 hours in 15% glucose medium. It was disclosed that activities of rate-limiting enzymes including chorismate mutase and prephenate dehydratase in MWEC 101-5 were desensitized to 2mM L-phenylalanine in the enzyme reaction mixture and that activities level of 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthase and prephenate dehydratase were increased more than 20 times over those of the parental strain.

  • PDF

2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside modulated human umbilical vein endothelial cells injury under oxidative stress

  • Guo, Yan;Fan, Wenxue;Cao, Shuyu;Xie, Yuefeng;Hong, Jiancong;Zhou, Huifen;Wan, Haitong;Jin, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.473-479
    • /
    • 2020
  • Endothelial cell injury is a major contributor to cardiovascular diseases. The 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside (TSG) contributes to alleviate human umbilical vein endothelial cells (HUVECs) injury through mechanisms still know a little. This study aims to clarify the TSG effects on gene expression (mRNA and microRNA) related to oxidative stress and endoplasmic reticulum stress induced by H2O2 in HUVECs. We found that TSG significantly reduced the death rate of cells and increased intracellular superoxide dismutase activity. At qRT-PCR, experimental data showed that TSG significantly counteracted the expressions of miR-9-5p, miR-16, miR-21, miR-29b, miR-145-5p, and miR-204-5p. Besides, TSG prevented the expression of ATF6 and CHOP increasing. In contrast, TSG promoted the expression of E2F1. In conclusion, our results point to the obvious protective effect of TSG on HUVECs injury induced by H2O2, and the mechanism may through miR16/ATF6/ E2F1 signaling pathway.

Differential Expression Profiling of Salivary Exosomal microRNAs in a Single Case of Periodontitis - A Pilot Study

  • Park, Sung Nam;Son, Young Woo;Choi, Eun Joo;You, Hyung-Keun;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.223-230
    • /
    • 2018
  • Exosomes are Nano-sized lipid vesicles secreted from mammalian cells containing diverse cellular materials such as proteins, lipids, and nucleotides. Multiple lines of evidence indicate that in saliva, exosomes and their contents such as microRNAs (miRNAs) mediate numerous cellular responses upon delivery to recipient cells. The objective of this study was to characterize the different expression profile of exosomal miRNAs in saliva samples, periodically isolated from a single periodontitis patient. Unstimulated saliva was collected from a single patient over time periods for managing periodontitis. MicroRNAs extracted from each phase were investigated for the expression of exosomal miRNAs. Salivary exosomal miRNAs were analyzed using Affymetrix miRNA arrays and prediction of target genes and pathways for its different expression performed using DIANA-mirPath, a web-based, computational tool. Following the delivery of miRNA mimics (hsa-miR-4487, -4532, and -7108-5p) into human gingival fibroblasts, the expression of pro-inflammatory cytokines and activation of the MAPK pathway were evaluated through RT-PCR and western blotting. In each phase, 13 and 43 miRNAs were found to be differently expressed $({\mid}FC{\mid}{\geq}2)$. Among these, hsa-miR-4487 $({\mid}FC{\mid}=9.292005)$ and has-miR-4532 $({\mid}FC{\mid}=18.322697)$ were highly up-regulated in the clinically severe phase, whereas hsa-miR-7108-5p $({\mid}FC{\mid}=12.20601)$ was strongly up-regulated in the clinically mild phase. In addition, the overexpression of miRNA mimics in human gingival fibroblasts resulted in a significant induction of IL-6 mRNA expression and p38 phosphorylation. The findings of this study established alterations in salivary exosomal miRNAs which are dependent on the severity of periodontitis and may act as potential candidates for the treatment of oral inflammatory diseases.

Periodontopathogen LPSs Regulate MicroRNA Expression in Human Gingival Epithelial Cells

  • Lee, Hwa-Sun;Na, Hee-Sam;Jeong, So-Yeon;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.109-116
    • /
    • 2011
  • Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopoly-saccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs (miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 ${\mu}g$/ml of E. coli (Ec) LPS or 5 ${\mu}g$/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875-3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.

Enantio-Selective Inhibition of (1R,9S)- and (1S,9R)-$\beta$-Hydrastines on Dopamine Biosynthesis in PC12 Cells

  • Yin, Shou-Yu;Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, You-Jong;Kang, Min-Hee;Lee, Myung-Koo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.138.2-139
    • /
    • 2003
  • The inhibitory effects of (1R, 9S)- and (1S, 9R)-enantiomers of $\beta$-hydrastine (BHS) on dopamine biosynthesis in PC12 cells were investigated. (1R, 9S)-BHS decreased the intracellular dopamine content with the $IC_{50}$ value of 14.3 $\mu\textrm{M}$ at 24 h, but (1S, 9R)-BHS did not. In these conditions, (1R, 9S)-BHS inhibited TH activity mainly in a concentration-dependent manner(33% inhibition at 20 $\mu\textrm{M}$) and decreased TH mRNA level. (omitted)

  • PDF

Detection of MicroRNA-21 Expression as a Potential Screening Biomarker for Colorectal Cancer: a Meta-analysis

  • Jiang, Jian-Xin;Zhang, Na;Liu, Zhong-Min;Wang, Yan-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7583-7588
    • /
    • 2014
  • Background: Colorectal cancer (CRC) is a major cause of cancer-related death and cancer-related incidence worldwide. The potential of microRNA-21 (miR-21) as a biomarker for CRC detection has been studied in several studies. However, the results were inconsistent. Therefore, we conducted the present meta-analysis to systematically assess the diagnostic value of miR-21 for CRC. Materials and Methods: Using a random-effect model, the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to evaluate the diagnostic performance of miR-21 for CRC. A summary receiver operating characteristic (SROC) curve and an area under the curve (AUC) were also generated to assess the diagnosis accuracy of miR-21 for CRC. Q test and I2 statistics were used to assess between-study heterogeneity. Publication bias was evaluated by the Deeks' funnel plot asymmetry test. Results: A total of 986 CRC patients and 702 matched healthy controls from 8 studies were involved in the meta-analysis. The pooled results for SEN, SPE, PLR, NLR, DOR, and AUC were 57% (95%CI: 39%-74%), 87% (95%CI: 78%-93%), 4.4 (95%CI: 2.4-8.0), 0.49 (95%CI: 0.32-0.74), 9 (95%CI: 4-22), and 0.83 (95%CI: 0.79-0.86), respectively. Subgroup analyses further suggested that blood-based studies showed a better diagnostic accuracy compared with feces-based studies, indicating that blood may be a better matrix for miR-21 assay and CRC detection. Conclusions: Our findings suggest that miR-21 has a potential diagnostic value for CRC with a moderate level of overall diagnostic accuracy. Hence, it could be used as auxiliary means for the initial screening of CRC and avoid unnecessary colonoscopy, which is an invasive and expensive procedure.

MicroRNA-200a Targets Cannabinoid Receptor 1 and Serotonin Transporter to Increase Visceral Hyperalgesia in Diarrhea-predominant Irritable Bowel Syndrome Rats

  • Hou, Qiuke;Huang, Yongquan;Zhang, Changrong;Zhu, Shuilian;Li, Peiwu;Chen, Xinlin;Hou, Zhengkun;Liu, Fengbin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.656-668
    • /
    • 2018
  • Background/Aims MicroRNAs (miRNAs) were reported to be responsible for intestinal permeability in diarrhea-predominant irritable bowel syndrome (IBS-D) rats in our previous study. However, whether and how miRNAs regulate visceral hypersensitivity in IBS-D remains largely unknown. Methods We established the IBS-D rat model and evaluated it using the nociceptive visceral hypersensitivity test, myeloperoxidase activity assay, restraint stress-induced defecation, and electromyographic (EMG) activity. The distal colon was subjected to miRNA microarray analysis followed by isolation and culture of colonic epithelial cells (CECs). Bioinformatic analysis and further experiments, including dual luciferase assays, quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay, were used to detect the expression of miRNAs and how it regulates visceral hypersensitivity in IBS-D rats. Results The IBS-D rat model was successfully established. A total of 24 miRNAs were differentially expressed in the distal colon of IBS-D rats; 9 were upregulated and 15 were downregulated. Among them, the most significant upregulation was miR-200a, accompanied by downregulation of cannabinoid receptor 1 (CNR1) and serotonin transporter (SERT). MiR-200a mimic markedly inhibited the expression of CNR1/SERT. Bioinformatic analysis and luciferase assay confirmed that CNR1/SERT are direct targets of miR-200a. Rescue experiments that overexpressed CNR1/SERT significantly abolished the inhibitory effect of miR-200a on the IBS-D rats CECs. Conclusions This study suggests that miR-200a could induce visceral hyperalgesia by targeting the downregulation of CNR1 and SERT, aggravating or leading to the development and progression of IBS-D. MiR-200a may be a regulator of visceral hypersensitivity, which provides potential targets for the treatment of IBS-D.

Effects of $(1R,9S)-{\beta}-Hydrastine$ hydrochloride on L-DOPA-Induced Cytotoxicity in PC12 cells

  • Yin, Shou-Yu;Lee, Jae-Joon;Kim, Yu-Mi;Jin, Chun-Mei;Yang, Yoo-Jung;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.124-128
    • /
    • 2004
  • Previously, $(1R,9S)-{\beta}-Hydrastine$ hydrochloride has been found to lower dopamine content in PC12 cells (Kim et al., 20001). In this study, the effects of $(1R,9S)-{\beta}-Hydrastine$ hydrochloride on L-DOPA-induced cytotoxicity in PC12 cells were investigated. Treatment with $(1R,9S)-{\beta}-Hydrastine$ hydrochloride at concentrations higher than $500\;{\mu}M$ caused cytotoxicity in PC12 cells. In addition, $(1R,9S)-{\beta}-Hydrastine$ hydrochloride at non-cytotoxic or cytotoxic concentrations significantly enhanced L-DOPA-induced cytotoxicity (L-DOPA concentration, $50\;{\mu}M$). Treatment of PC12 cells with $750\;{\mu}M$ $-1R,9S)-{\beta}-Hydrastine$ hydrochloride and $50\;{\mu}M$ L-DOPA, alone or in combination, also induced cell death via a mechanism which exhibited morphological and biochemical characteristics of apoptosis, including chromatin condensation and membrane blebbing. Exposure of PC12 cells to $(1R,9S)-{\beta}-Hydrastine$ hydrochloride, L-DOPA and $(1R,9S)-{\beta}-Hydrastine$ hydrochloride plus L-DOPA for 48 h resulted in a marked increase in the cell loss and percentage of apoptotic cells compared with exposure for 24 h. These data indicate that $(1R,9S)-{\beta}-Hydrastine$hydrochloride at higher concentration ranges aggravates L-DOPA-induced neurotoxicity cytotoxicity in PC12 cells. Therefore, it is proposed that the long-term L-DOPA therapeutic patients with $(1R,9S)-{\beta}-Hydrastine$ hydrochloride could be checked for the adverse symptoms.

MicroRNA Expression Profile Analysis Reveals Diagnostic Biomarker for Human Prostate Cancer

  • Liu, Dong-Fu;Wu, Ji-Tao;Wang, Jian-Ming;Liu, Qing-Zuo;Gao, Zhen-Li;Liu, Yun-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3313-3317
    • /
    • 2012
  • Prostate cancer is a highly prevalent disease in older men of the western world. MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression via posttranscriptional inhibition of protein synthesis. To identify the diagnostic potential of miRNAs in prostate cancer, we downloaded the miRNA expression profile of prostate cancer from the GEO database and analysed the differentially expressed miRNAs (DE-miRNAs) in prostate cancerous tissue compared to non-cancerous tissue. Then, the targets of these DE-miRNAs were extracted from the database and mapped to the STRING and KEGG databases for network construction and pathway enrichment analysis. We identified a total of 16 miRNAs that showed a significant differential expression in cancer samples. A total of 9 target genes corresponding to 3 DE-miRNAs were obtained. After network and pathway enrichment analysis, we finally demonstrated that miR-20 appears to play an important role in the regulation of prostate cancer onset. MiR-20 as single biomarker or in combination could be useful in the diagnosis of prostate cancer. We anticipate our study could provide the groundwork for further experiments.