• 제목/요약/키워드: miR-101

Search Result 66, Processing Time 0.022 seconds

MicroRNA-101 Inhibits Cell Proliferation, Invasion, and Promotes Apoptosis by Regulating Cyclooxygenase-2 in Hela Cervical Carcinoma Cells

  • Huang, Fei;Lin, Chen;Shi, Yong-Hua;Kuerban, Gulinar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5915-5920
    • /
    • 2013
  • Aim: Although aberrant miRNA expression has been documented, altered miR-101 expression in cervical cancer and its carcinogenic effects and mechanisms remain unexplored. The aim of our study was to investigate the role of miR-101 alteration in cervical carcinogenesis. Methods: Expression of miR-101 was examined by quantitative real-time reverse transcriptase PCR (qRT-PCR) in Hela cells. After modulating miR-101 expression using miR-101 mimics, cell growth, apoptosis and proliferation, and migration were tested separately by MTT or flow cytometry and cell wound healing assay and protein expression was detected by qRT-PCR. The expression of COX-2 in Hela cell was also examined by immunohistochemical staining and the correlation with miR-101 expression was analysed. Results: The miR-101 demonstrated significantly low expression in Hela cell. When we transfected miR-101 mimics into Hela cells, the modulation of miR-101 expression remarkably influenced cell proliferation, cycling and apoptosis: 1) The expression of microRNA-101 tended to increase after transfection; 2) Overexpression of miR-101 was able to promote cell apoptosis, the apoptosis rate being markedly higher (97.6%) than that seen pre-transfection (12.2%) (P<0.05); 3) The miR-101 negatively regulates cell migration and invasion, scratch results being lower ($42.7um{\pm}2um$) than that observed pre-transfection ($181.4um{\pm}2um$); 4) miRNA-101 inhibits the proliferation of Hela cells as well as the level of COX-2 protein, which was negatively correlated with miR-101 expression. Conclusions: Overexpression of miR-101 has obvious inhibitory effects on cell proliferation, migration and invasion. Thus reduced miR-101 expression could participate in the development of cervical cancer at least partly through loss of inhibition of target gene COX-2, which probably occurs in a relative late phase of carcinogenesis. Our data suggest an important role of miR-101 in the molecular etiology of cancer and indicate potential application of miR-101 in cancer therapy.

miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin

  • Cao, Ke;Li, Jingjing;Zhao, Yong;Wang, Qi;Zeng, Qinghai;He, Siqi;Yu, Li;Zhou, Jianda;Cao, Peiguo
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.96-102
    • /
    • 2016
  • miR-101 is considered to play an important role in hepatocellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while downregulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment.

miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates

  • Li, Jie;Li, You;Wang, Shengjie;Che, Hui;Wu, Jun;Ren, Yongxin
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.572-576
    • /
    • 2019
  • Bisphosphonates are the mainstay of therapy worldwide for osteoporosis. However, bisphosphonates also have limitations. The objective of this study was to determine the role of miR-101-3p/Rap1b signal pathway in osteoclast differentiation after treatment with bisphosphonates. Our results revealed that miR-101-3p was an important regulator in bisphosphonates treated-osteoclasts. When miR-101-3p was down-regulated in bone marrow-derived macrophage-like cells (BMMs), the development of mature osteoclasts was promoted, and vice versa. However, alendronate decreased multinucleated cell number regardless of whether miR-101-3p was knocked down or over-expressed. TRAP activity assay confirmed the above results. Luciferase assay indicated that miR-101-3p was a negative regulator of Rap1b. Western blot analysis revealed that protein expression level of Rap1b in BMMs transfected with OV-miR-101-3p was lower than that in BMMs transfected with an empty vector. Rap1b overexpression increased TRAP-positive multinucleated cells, while Rap1b inhibition decreased the cell numbers. In vivo data showed that miR-101-3p inhibited osteoclast differentiation in ovariectomized mice while overexpressed of Rap1b blocked the differentiation. Taken together, our data demonstrate that miR-101-3p/Rap1b signal pathway plays a key role in osteoclast differentiation after treatment with bisphosphonates.

Single Nucleotide Polymorphisms in miR-149 (rs2292832) and miR-101-1 (rs7536540) Are Not Associated with Hepatocellular Carcinoma in Thai Patients with Hepatitis B Virus Infection

  • Pratedrat, Pornpitra;Sopipong, Watanyoo;Makkoch, Jarika;Praianantathavorn, Kesmanee;Chuaypen, Natthaya;Tangkijvanich, Pisit;Payungporn, Sunchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6457-6461
    • /
    • 2015
  • MicroRNAs directly and indirectly influence many biological processes such as apoptosis, cell maintenance, and immune responses, impacting on tumor genesis and metastasis. They modulate gene expression at the posttranscriptional level and are associated with progression of liver disease. Hepatocellular carcinoma (HCC) is a cancer which mostly occurs in males. There are many factors affect HCC development, for example, hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV), co-infection, environmental factors including alcohol, aflatoxin consumption and host-related factors such as age, gender immune response, microRNA and single nucleotide polymorphisms (SNPs). Chronic infection with the hepatitis B virus is the major factor leading to HCC progression since it causes the liver injury. At present, there are many reports regarding the association of SNPs on miRNAs and the HCC progression. In this research, we investigated the role of miR-149 (rs2292832) and miR-101-1 (rs7536540) with HCC progression in Thai population. The study included 289 Thai subjects including 104 HCC patients, 90 patients with chronic hepatitis B virus infection (CHB) and 95 healthy control subjects. The allele and genotype of rs2292832 and rs7536540 polymorphisms were determined by TaqMan real-time PCR assay. Our results revealed no significant association between miR-149 (rs2292832) and miR-101-1 (rs7536540) and the risk of HCC in our Thai population. However, this research is the first study of miR-149 (rs2292832) and miR-101-1 (rs7536540) in HCC in Thai populations and the results need to be confirmed with a larger population.

Roles of MiR-101 and its Target Gene Cox-2 in Early Diagnosis of Cervical Cancer in Uygur Women

  • Lin, Chen;Huang, Fei;Zhang, Ya-Jing;Tuokan, Talafu;Kuerban, Gulinaer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.45-48
    • /
    • 2014
  • Aims: Early diagnosis is important for cervical cancer treatment. This study aimed to characteriz the microRNA profile and target gene protein levels of cervical cancers in Uygur women for application in early diagnosis. Methods: The profiles of miRNA in cervical cancer and chronic cervicitis were analyzed with miRNAmicroarray V4.0. The expression of miR-101 was detected by real-time PCR and locked nucleotide acid in situ hybridization (LNA-ISH). Cox-2 protein levels were assessed by immunohistochemistry. Results: The microarray identified a set of 12 miRNAs significantly decreased in cervical cancer in comparison to the control group. Quantitative RT-PCR analysis showed miR-101 to be significantly downregulated in cancer tissues (p<0.05) while LNA-ISH showed miR-101 positive rates of 80% (20/25) and 8% (5/25) (p<0.05) in the control and cervical cancer groups. Cox-2 positive rates of cervical cancer and control groups were 84% (21/25) and 8% (2/25) (p<0.05). Conclusions: Use of down-regulation of miR-101 and up-regulation of Cox-2 as markers may play a role in early diagnosis of cervical cancer in Uygur women.

L-Phenylalanine Production by Regulatory Mutants of Excherichia coli K-12 (Escherichia coli K-12 대사조절 변이주에 의한 L-페닐알라닌 생산)

  • Lee, Sae-Bae;Park, Chung;Won, Chan-Hee;Choi, Duk-Ho;Lim, Bun-San
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.174-179
    • /
    • 1990
  • In order to overproduce L-phenylalanine, various kind of regulatory mutants were isolated from parental Escherichia coli K-12. MWEC 83 Producing 7.4g/l of L-phenylalanine has been derived as a tyrosine and tryptophan double auxotrophic mutant. To produce L-phenylalanine without adding L-tyrosine and L-tryptophan, revertant strain MWEC 101 was isolated from MWEC 83. Further various analogues and valine resistant mutants were isolated from MWEC 101. MWEC 101-5 was the most excellent strain that produced 17.9g/l of L-phenylalanine after having been cultivated for 54 hours in 15% glucose medium. It was disclosed that activities of rate-limiting enzymes including chorismate mutase and prephenate dehydratase in MWEC 101-5 were desensitized to 2mM L-phenylalanine in the enzyme reaction mixture and that activities level of 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthase and prephenate dehydratase were increased more than 20 times over those of the parental strain.

  • PDF

Construction of Plasmids for Overproduction of L-Phenylalanine (L-페닐알라닌 대량생산을 위한 재조합 플라스미드 구성)

  • Lee, Sae-Bae;Park, Chung;Won, Chan-Hee;Choi, Duk-Ho;Lim, Bun-San
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.169-173
    • /
    • 1990
  • For the overproduction of L-phenylalanine using Escherichia coli, the authors constructed various recombinant plasmids including pMW 10, pMW 11 and pMW 12. The $aroF{FR}$ and $pheA^{FR}$ genes for the production of L-phenylalanine were isolated from Escherichia coli MWEC 101-5 strains. The productivity and atability of Escherichia coli regulatory mutants containing recombinant plasmids were investigated to evaluate the efficiency of the $aroF^{FR}$ and $pheA^{FR}$ genes. The MWEC 101-5/pMW 11 strain produced 24.3g/l of L-phenylalanine while its stability was 73.8 percent. The specific activity of prephenate dehydratase in the MWEC 101-5/pMW 11 strain increased by 26-fold compared with that of Escherichia coli K-12.

  • PDF

Changes in the components of salivary exosomes due to initial periodontal therapy

  • Arisa Yamaguchi;Yuto Tsuruya;Kazuma Igarashi;Zhenyu Jin;Mizuho Yamazaki-Takai;Hideki Takai;Yohei Nakayama;Yorimasa Ogata
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.347-361
    • /
    • 2023
  • Purpose: Exosomes are membrane vesicles that are present in body fluids and contain proteins, lipids, and microRNA (miRNA). Periodontal tissue examinations assess the degree of periodontal tissue destruction according to the probing depth (PD), clinical attachment loss (CAL), bleeding on probing, and X-ray examinations. However, the accurate evaluation of the prognosis of periodontitis is limited. In this study, we collected saliva from patients before and after initial periodontal therapy (IPT) and compared changes in the clinical parameters of periodontitis with changes in the components of salivary exosomes. Methods: Saliva was collected from patients with stage III and IV periodontitis at the first visit and post-IPT. Exosomes were purified from the saliva, and total protein and RNA were extracted. Changes in expression levels of C6, CD81, TSG101, HSP70, and 6 kinds of miRNA were analyzed by western blots and real-time polymerase chain reaction. Results: Patients with increased C6 expression after IPT had significantly higher levels of periodontal inflamed surface area (PISA), miR-142, and miR-144 before and after IPT than patients with decreased C6 expression after IPT. Patients with decreased and unchanged CD81 expression after IPT showed significantly higher PD, CAL, and PISA before IPT than after IPT. Patients with decreased and unchanged TSG101 expression after IPT had significantly higher PD before IPT than after IPT. Patients with increased HSP70 expression after IPT had significantly higher PD and PISA before and after IPT than patients with unchanged HSP70 after IPT. The expression levels of miR-142, miR-144, miR-200b, and miR-223 changed with changes in the levels of C6, CD81, TSG101, and HSP70 in the salivary exosomes of periodontitis patients before and after IPT. Conclusions: The expression levels of proteins and miRNAs in salivary exosomes significantly changed after IPT in periodontitis patients, suggesting that the components of exosomes could serve as biomarkers for periodontitis.

Cloning and Characterization of the Putative Transferrin Receptor cDNA from the Olive Flounder (Paralichthys olivaceus)

  • Won Kyoung-Mi;Park Soo-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.101-104
    • /
    • 2003
  • A cDNA clone for the olive flounder (Paralichthys olivaceus) transferrin receptor (fTfR) was isolated from a leukocytes cDNA library. The fTfR gene consisted of 2,319 bp encoding 773 amino acid residues. The amino acid sequence alignment of the fTfR showed that their size and hydrophobic profile are similar. In addition, the Tyr-Thr-Arg-Phe (YTRF) motif that is the recognition signal for high-efficiency endocytosis, is conserved very well. This motif is important for functional properties of TfR. The deduced amino acid sequence had $42.4-42.9\%$ identities with the previously reported TfRs of vertebrates. The fTfR was expressed in the blood, kidney, spleen, and liver of healthy olive flounder by the Northern blot hybridization.