• Title/Summary/Keyword: methylmercury

Search Result 86, Processing Time 0.03 seconds

Enhancement of a Liver Form of Cytosolic Phospholipase $A_2$ Activity by Methylmercury

  • Huh, Don-Haeng;Kang, Mi-Sun;Sohn, Dong-Hun;Na, Doe-Sun;Kim, Dae-Kyong
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.189-195
    • /
    • 1998
  • Methylmercury (MeHg), which is widely distributed in the environment, is well known for both its acute and chronic poisoning effects on the human health; however, the precise biochemical mechanisms by which this compound elicits its toxicity in a cellular level are still poorly understood. To examine whether MeHg-induced liver injury involves activation of Phospholipase $A_2$ ($PLA_2$), the $PLA_2$ activity of control and MeHg-administrated livers was measured. MeHg stably enhanced a liver form of cytosolic $PLA_2$ activity, which exhibited several biochemical properties similar to those of the 100 kDa $cPLA_2$, except in its elution profile of a DEAE-5PW HPLC, and it migrated as a molecular weight of 80 kDa in Western blot analysis. This blotting analysis also indicated that the MeHg-induced enhancement of the activity could be due to the increase in the amount of the enzyme protein rather than a stable modification of the enzyme such as phosphorylation. Our data also showed the higher myeloperoxidase activity in MeHg-administrated liver than in the control, suggesting that this increase in the amounts of the 80 kDa $PLA_2$ and its activity may be resulted from infiltration of neutrophils into the liver during a hepatic injury process such as MeHg-induced inflammation. Taken together, these data suggest that MeHg-induced liver injury may be mediated by activation of the 80 kDa form of liver cytosolic $PLA_2$.

  • PDF

Synergistic Effects of Dietary Vitamins C and E on Methylmercury-Induced Toxicity in Juvenile Olive Flounder Paralichthys olivaceus

  • Park, Gunhyun;Yun, Hyeonho;Lee, Seunghan;Taddese, Fasil;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.143-149
    • /
    • 2015
  • This experiment was conducted to evaluate the synergistic effects of vitamin C and E on methylmercury (MeHg) toxicity in juvenile olive flounder Paralichthys olivaceus. In a $3{\times}3$ factorial design, 9 experimental diets containing three different vitamin C (0, 200 or 400 mg/kg diet in the form of l-ascorbyl-2-monophosphate) and vitamin E (0, 100 or 200 mg/kg diet in the form of dl-${\alpha}$-tocopheryl acetate) levels with the Hg toxicity level (20 mg/kg diet in the form of MeHg) were formulated. Triplicate groups of fish averaging $2.3{\pm}0.05g(mean{\pm}SD)$ were fed one of the 9 diets in a flow through system for 8 weeks. Fish fed 400 mg vitamin C/kg diet with 100 or 200 mg vitamin E/kg diet showed significantly (P < 0.05) higher weight gain (WG) than did fish fed the other diets. Fish fed 400 mg vitamin C/kg diet at all vitamin E levels and those which fed vitamin C and E equally at a rate of 200 mg/kg diet showed significantly (P < 0.05) higher feed efficiency (FE), specific growth rate (SGR) and protein efficiency ratio (PER) than did fish fed the other diets. Fish fed 200 and 400 mg vitamin C/kg diet exhibited significantly (P < 0.05) lower Hg concentration in their muscle as well as kidney than did fish fed the other diets. Therefore, these results clearly indicated that the synergistic effects of these two vitamins on MeHg toxicity by supplementing dietary vitamin C (200 and 400 mg/kg diet) with vitamin E (100 and 200 mg/kg diet) in juvenile olive flounder.

Monitoring Total Mercury and Methylmercury in Commonly Consumed Aquatic Foods (다소비 수산식품 중 총수은 및 메틸수은 모니터링)

  • Joo, Hyun-Jin;Noh, Mi-Jung;Yoo, Ji-Heon;Jang, Young-Mi;Park, Jong-Seok;Kang, Myoung-Hee;Kim, Mee-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.269-276
    • /
    • 2010
  • Total mercury and methylmercury concentrations were determined in 15 commonly consumed aquatic food species using total mercury analyzer and gas chromatography with electron capture detector. The mean total mercury and methylmercury concentrations (mg/kg) were 0.088 and 0.034 in mackerel, 0.061 and 0.016 in hair tail, 0.030 and 0.005 in yellow croaker, 0.032 and 0.008 in Alaska pollock, 0.059 and 0.023 in eastern catfish, 0.110 and 0.045 in snakehead, 0.030 and 0.011 in Japanese common squid, 0.026 and 0.009 in common octopus, 0.035 and 0.008 in swimming crab, 0.009 and not detected (ND) in oyster, 0.011 and ND in shortneck clam, 0.008 and ND in mussel, 0.018 and ND in sea mustard, 0.007 and ND in nori, and 0.019 and ND in sea tangle, respectively. The total weekly dietary intakes of total mercury and methylmercury were estimated, respectively, using food consumption data from diet surveys and the concentrations of total mercury and methylmercury from this study. They were $0.178\;{\mu}g/kg$ body weight (b.w.)/week (3.57% of provisional tolerable weekly intake (PTWI)) and $0.052\;{\mu}g/kg$ b.w./week (3.34% of PTWI) respectively, and all were within their respective PTWI set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Therefore, considering that the main contributor to mercury intake in the diet is aquatic foods and that the 15 aquatic food species examined in this study are highly consumed, it is concluded that the mercury levels in the foods measured in this study do not present a concern for consumer health.

The Study on the Methylmercury Analysis and the Monitoring of Total Mercury and Methylmercury in Fish (어류 중 메틸수은 분석법 확립 및 모니터링)

  • Kim, Hee-Yun;Chung, So-Young;Sho, You-Sub;Oh, Geum-Soon;Park, Seong-Soo;Suh, Jung-Hyuk;Lee, Eun-Ju;Lee, Yoon-Dong;Choi, Woo-Jeong;Eom, Ji-Yoon;Song, Min-Soo;Lee, Jong-Ok;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.882-888
    • /
    • 2005
  • Procedure for analysis of methylmercury in fish was developed, involving addition of HCl, extraction with toluene, and clean-up using L-cystein solution. Obtained extract is analyzed by gas chromatography with electron capture detector using Ulbon HR-Thermon-Hg column. Detection limit and recovery of the method were 0.005mg/kg (expressed as Hg), 98-107 (103%), respectively. Total mercury and methylmercury concentrations in 175 commercial fish samples ranged from [mean-max (mean), unit: mg/kg]: 0.014-1.200 (0.270) and 0.006-0.901 (0.168) in tuna-fish, 0.020-0.934 (0.323) and 0.012-0.553 (0.149) in martin-fish, 0.082-0.782 (0.391) and 0.040-0.436(0.201) in shark, 0,023-0.031 (0.026) and 0,013-0.018 (0.015) in salmon, 0.098-0.193 (0.133) and 0.031-0.015(0.090) in tilefish, and 0,031-0.214 (0.089) and 0.016-0.093 (0.042) in canned tuna respectively. No sample of analyzed fish exceeded 1.0mg/kg wet wt., limit for methylmercury established by Codex. In all species examined, estimated weekly intake was lower than Provisional Tolerable Weekly Intake recommended by the JECFA (the Joint FAO/WHO Expert Committee on Food Additives).

Analysis of mercury and methylmercury in river sediment samples (하천퇴적물 중의 수은 및 메틸수은 분석 연구)

  • Lee, Jung-Sub;Park, Jae-Sung;Kang, Hak-Gu;Cho, Jae-Seok;Hong, Eun-Jin;Jeong, Gi-Taeg;Cha, Jun-Seok;Jung, Kwang-Yong;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • In this study, the use of purge & trap GC-MS technique for determination of methylmercury in sediment samples was described. The method detection limit of the method was determined as 0.06 ng/g and the recovery of the method was $102{\pm}11.4%$, with precisions better than 11.2%. The method was validated by analysis of CRMs such as ERM CC580 (estuarine sediment) and IAEA 405 (sediment). Additionally, the performance of the method was tested on river sediment samples and the analytical results were compared with those of the GC-CVAFS, which has been widely used for methylmercury analysis.

Study of nitrate concentration in Najaf Abad aquifer using GIS

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.167-172
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.