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Abstract
This experiment was conducted to evaluate the synergistic effects of vitamin C and E on methylmercury (MeHg) toxicity in juve-
nile olive flounder Paralichthys olivaceus. In a 3×3 factorial design, 9 experimental diets containing three different vitamin C (0, 
200 or 400 mg/kg diet in the form of l-ascorbyl-2-monophosphate) and vitamin E (0, 100 or 200 mg/kg diet in the form of dl-α-
tocopheryl acetate) levels with the Hg toxicity level (20 mg/kg diet in the form of MeHg) were formulated. Triplicate groups of fish 
averaging 2.3 ± 0.05 g (mean ± SD) were fed one of the 9 diets in a flow through system for 8 weeks. Fish fed 400 mg vitamin C/
kg diet with 100 or 200 mg vitamin E/kg diet showed significantly (P < 0.05) higher weight gain (WG) than did fish fed the other 
diets. Fish fed 400 mg vitamin C/kg diet at all vitamin E levels and those which fed vitamin C and E equally at a rate of 200 mg/kg 
diet showed significantly (P < 0.05) higher feed efficiency (FE), specific growth rate (SGR) and protein efficiency ratio (PER) than 
did fish fed the other diets. Fish fed 200 and 400 mg vitamin C/kg diet exhibited significantly (P < 0.05) lower Hg concentration in 
their muscle as well as kidney than did fish fed the other diets. Therefore, these results clearly indicated that the synergistic effects 
of these two vitamins on MeHg toxicity by supplementing dietary vitamin C (200 and 400 mg/kg diet) with vitamin E (100 and 
200 mg/kg diet) in juvenile olive flounder.
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Introduction

Mercury (Hg) is a naturally occurring element found in air, 
water, and soil. It exists in the environment in three oxidation 
states Hg (0), Hg (I), and Hg (II). Microbial methylation in 
aquatic ecosystems is a crucial component of the Hg cycle 
in the environment (Wiener et al., 2003). Once in surface 
water, Hg enters a complex cycle whereby one form can be 
converted to another. Mercury attached to particles can settle 
onto sediments where it can diffuse into the water column, be 
resuspended, and be buried by other sediments, or be methyl-

ated. Methylmercury (MeHg) can enter the food chain, or it 
can be released back to the atmosphere by volatilization (Dur-
ing et al., 2009).

Fish naturally absorb MeHg into their tissues directly from 
water as it passes over their gills and by eating other contami-
nated foods, including fish (Roe, 2003). Mercury contamina-
tion in commercial fish feeds also occurs due to high metal 
levels in the raw materials (Wang et al., 2012). For this reason, 
dietary exposure is one of the routes of Hg contamination in 
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perimental diets (C0E0, C0E100, C0E200, C200E0, C200E100, C200E200, 
C400E0, C400E100 and C400E200) were formulated to be isonitroge-
nous and isoenergetic, containing 50% crude protein (CP) and 
16.7 kJ available energy/g diet. The energy levels of diets were 
calculated based on 16.7, 16.7, and 37.7 kJ g-1 for protein, car-
bohydrate, and lipid, respectively (NRC, 2011). Vitamin-free 
casein was used as the main protein source. All the ingredients 
were mixed completely and then pelleted using 1- and 2-mm 
diameter dies (Bai and Lee, 1998). After processing, all diets 
were packed into small bags and stored at -20°C until use. 

Experimental fish and feeding trials

Juvenile olive flounder were obtained from Tong-Yeong, 
Korea. Prior to the start of the feeding trial, fish were fed the 
basal diet for 10 days as an adjustment to the semi-purified 
diet, and to deplete vitamin C reserves. The feeding trial was 
performed in a flow through system with 30 L aquaria re-
ceiving filtered seawater at a rate of 2 L/min. Supplemental 
aeration was provided to maintain dissolved oxygen near satu-
ration. Water temperature was kept at 20 ± 1°C. Twenty exper-
imental fish with a mean weight of 2.3 ± 0.05 g (mean ± SD) 
were randomly distributed into each aquarium. Each diet was 
fed to triplicate groups to satiation level three times per day 
at a feeding rate of 2.0 to 3.5% of wet body weight. Total fish 
weight in each aquarium was determined every 3 weeks, and 
the amount of diet fed to the fish was adjusted accordingly.

Growth performance

Growth performance was evaluated using weight gain 
(WG), specific growth rate (SGR), feed efficiency (FE), and 
the protein efficiency ratio (PER). 

WG was calculated using the following formula:

  Weight Gain (%) = × 100
final weight ‒ initial weight 

initial weight 

SGR was calculated using the following formula:

Specific Growth Rate (%) = × 100
(ln final weight ‒ ln initial weight)

days

FE and the PER were calculated using the following formu-
las: 

                Feed efficiency (%) = × 100
wet weight gain
dry feed intake

        

Protein efficiency ratio = 
wet weight gain
protein intake

fish (Choi and Cech, 1998). As a result, Hg has been regarded 
as undesirable substance in animal feed (EFSA, 2008).

Seafood contamination by MeHg is a public health con-
cern, particularly in countries with high rates of fish consump-
tion, such as Korea. In line with this, olive flounder is among 
marine fishes being preferred by consumers in Korea. Daily 
seafood consumption has reached 50.6 g, which accounts for 
~3.8% of the total food ingested (Moon et al., 2009; Choi et al., 
2012). Consequently, high blood Hg levels in a representative 
sample of the Korean adult population were associated with 
fish consumption (Kim and Lee, 2010). Accordingly, Moon et 
al. (2011) suggested implementation of systematic monitoring 
programs for seafood contamination by Hg in Korea. Limiting 
fish consumption was also suggested as a mechanism to avoid 
MeHg intake (Dorea and Barbosa, 2005).

Methylmercury is a neurotoxicant that affects the develop-
ing nervous system of humans and has been linked to neuro-
logical problems (Davidson et al., 2010). The various toxic 
effects induced by Hg in biological systems are due to altera-
tions in the antioxidant defense system (Sheweita, 1998; Ber-
ntssen et al., 2003; Alves et al., 2007; Berg et al., 2010). More-
over, MeHg has been shown to cause coronary heart disease in 
humans (Wang et al., 2012) and decreased levels of nutrients 
in rats (Fukino et al., 1984). 

Antioxidants such as vitamin C, vitamin E, and selenium 
(Se) decrease Hg toxicity in Japanese quail (Kung et al., 1987) 
and various other organisms (Chapman and Chan, 2000; Agar-
wal et al., 2010; Al-Attar, 2011). Bapu et al. (1994) examined 
the effects of vitamin C treatment after subcutaneous injec-
tions of methylmercuric chloride (MeHgCl) for 7 days in mice 
and found improved recovery of enzymatic activities.

Extensive work has emphasized the damage caused by 
heavy metal toxicity, but the combined ameliorative effect of 
vitamin C and E on MeHg contamination in fish should be 
investigated. Thus, the objective of this study was to evaluate 
the combined effects of vitamin C and E on tissue Hg, as well 
as growth-related problems, in juvenile olive flounder as the 
result of MeHg. 

Materials and Methods

Experimental diets 

Nine diets with three vitamin C levels (0, 200 and 400 mg/
kg diet in the form of l-ascorbyl-2-monophosphate) and three 
vitamin E levels (0, 100 and 200 mg/kg diet in the form of 
dl-α-tocopheryl acetate) with Hg (20 mg/kg Hg diet in the 
form of MeHg) were formulated (Tables 1 and 2). The 20 mg/
kg MeHg diet was chosen based on a previous study (unpub-
lished) that was conducted for 5 weeks in our laboratory and 
showed relatively lower mortality. In diets supplemented with 
MeHg and ascorbic acid sources, an equivalent amount of cel-
lulose was removed. In a 3 × 3 factorial design these nine ex-
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Vitamin C and E analysis 

Ascorbic acid and α-tocopherol concentrations of the diet 
and tissue were determined by high performance liquid chro-
matography (HPLC; DIONEX, SOFTRON, USA). For ascor-
bic acid, the ultraviolet detector was set to 254 nm. The mobile 
phases for ascorbic acid and α-tocopherol were 0.05 M KH-
2PO4 and hexane: isopropanol (98:2, v/v), respectively. The 
flow rate for both was 1.0 mL/min. Weighed samples were 
homogenized in 10% cold metaphosphoric acid (for ascorbic 
acid) and in 5-mL ethanol (for α-tocopherol). Homogenates 
were centrifuged at 3,000 g for 20 min and supernatants were 
analyzed after filtration through a 0.45-µm pore-size syringe 
filter. 

Sample collection and analysis

After the final weighing, three fish were randomly removed 
from each aquarium and sacrificed with a lethal dose of ben-
zocaine anesthetic (CAS, Canada). Proximate composition 
analyses of experimental diets were performed using standard 
methods (AOAC, 1995). Samples of diets were dried to a 
constant weight at 105°C to determine moisture content. Ash 
content was determined by incineration at 550°C, crude lipid 
content was determined by Soxhlet extraction using the SOX-
TEC SYSTEM 1046 (FOSS, Hoganas, Sweden), and crude 
protein content was determined by the Kjeldahl method (N × 
6.25), after acid digestion. 

Table 2. Analyzed concentration of Hg, vitamin C and E of the experimental diets (mg/kg)

Diets*

C0E0 C0E100 C0E200 C200E0 C200E100 C200E200 C400E0 C400E100 C400E200

Hg† 21.8 21.6 22.5 22.3 21.6 22.0 21.9 22.1 21.6
Vitamin C‡ 2.2 2.5   1.9      208        212       219       389        391       395
Vitamin E§ 0.9        89       189   1.2          91       191   1.6         88       190

*See Table 1.
†Hg source: Methylmercury
‡Vitamin C source: l-ascorbyl-2-monophosphate
§Vitamin E source: dl-α-tocopheryl acetate

Table 1. Composition of the experimental diets (% of dry matter basis)

               Ingredients
Diets

C0E0 C0E100 C0E200 C200E0 C200E100 C200E200 C400E0 C400E100 C400E200

Casein (vita free)* 32
Defatted fish meal† 25
Wheat flour‡ 18
Corn starch‡ 3.0
Fish oil§ 9.6
Vitamin premix (C & E free) ¶ 3.0
Minerals premix** 3.0
Hg-premix 0.4
Cellulose 6.0 5.0 4.0 4.0 3.0 2.0 2.0 1.0 0.0
Vitamin C 0.0 0.0 0.0 2.0 2.0 2.0 4.0 4.0 4.0
Vitamin E 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
Proximate analysis
Crude protein 50.3 50.8 50.8 50.2 50.5 50.9 50.7 50.8 50.8
Crude lipid 10.6 10.7 10.5 10.6 9.8 10.6 9.6 10.6 10.4
Ash 8.9 8.9 9.1 9.1 8.9 10.8 10.6 11.3 10.6
Moisture       10 12.8 11.6 11.2 5.9 10.8 11.4 13.1 7.9

*United States Biochemical, Cleveland, OH, 44122.
†Suhyup Feed Co. Ltd.
‡Young Nam Flour Mills Co., Busan, Korea.
§E-Wha oil Co., Ltd., Busan, Korea.
¶Contains (as mg/kg diet): dl-calcium pantothenate, 150; choline bitartrate, 3,000; inositol, 150; menadione, 6; niacian, 150; pyridoxine·HCl, 15; riboflavin, 30; 
thiamine mononitrate, 15; retinyl acetate, 6; biotin, 1.5; folic acid, 5.4; B12, 0.06; cholecalciferol, 2.4
**Contains (as mg/kg diet): Al, 1.2; Ca, 5000; Cl, 100; Cu, 5.1; Co, 9.9; Na, 1280; Mg, 520; P, 5000; K, 4300; Zn, 27; Fe, 40; I, 4.6; Mn, 9.1.
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Results

Growth performance

After 8 weeks of feeding, fish that were fed 400 mg/kg vi-
tamin C at all vitamin E levels had better growth performance, 
compared to the other groups. Significantly higher (P < 0.05) 
WG was exhibited by the C400E200 and C400E100 feeding groups. 
In general, WG appeared to decrease with decreasing amounts 
of vitamin C. Consequently, fish that were fed MeHg-contain-
ing diets without vitamin C and E showed significantly lower 
WG than the other groups. Other growth performance param-
eters such as FE, SGR and PER were found to be significantly 
higher (P < 0.05) for fish fed diets containing 400 mg/kg vi-
tamin C at all vitamin E levels, and for those that were on the 
C200E200 diet (Table 3). 

Mercury analysis

Greater than 90% of Hg present in fish is in the form of 
MeHg. Therefore, the total concentration of Hg was measured 
instead of MeHg (Bloom, 1992; Amlund et al., 2007). A di-
rect Hg analyzer (DMA-80, Milestone, Inc., Shelton, CT) was 
used to determine the tissue Hg concentration; the method fol-
lowed that of Lee et al. (2011). A certified reference material 
(DORM-2 dogfish liver, National Research Council, Canada) 
was used simultaneously during the analyses. 

Statistical analysis

Data were analyzed by two-way ANOVA to test the effect 
of the dietary treatments. Least significant difference (LSD) 
was used to compare means when a significant treatment 
effect was identified. SPSS version 16.0 (SPSS Inc., Chicago, 
IL, USA) was used and P-values of ≤ 0.05 were considered to 
indicate statistical significance.

Table 3. Growth performance of juvenile olive flounder fed experimental diet for 8 weeks*  

Diets†
Pooled
SEM§§

C0E0 C0E100 C0E200 C200E0 C200E100 C200E200 C400E0 C400E100 C400E200

IBW (g)‡ 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.2 0.03
FBW (g) §  5.2d  7.7c  7.3c   8.1bc  8.6b  9.5a  9.5a  9.9a       10.1a 0.26
WG (%)¶   131g     237ef    221f     258de      288cd      316bc    314bc      336ab     349a       12.4
SGR (%)#    2.20f     2.53de    2.43e     2.65cd     2.82bc     2.97ab     2.97ab    3.07a    3.13a 0.06
FE (%)**     65.5c       73.3c       69.9c       71.0c        88.9b  93.2ab       93.6ab  99.9ab     104.3a 2.81
PER††    1.30c    1.42c    1.38c    1.42c    1.76b     1.83ab     1.85ab     1.97ab    2.05a 0.06
SR (%)‡‡     51.7c       78.3a  58.3ab       65ab  66.7ab        75a 58.3ab        76.7a       70ab 6.52

* Values are means from groups (n = 3) of fish where the values in each row with different superscripts are significantly different (P < 0.05). 
†See Table 1.
‡Initial fish wet body weight (g). 
§Final fish wet body weight (g).
¶Weight gain (%) = (final weight - initial weight) × 100 / initial weight.
#Specific growth rate (%) = 100 × (ln final weight - ln initial weight) / rearing period (days).
**Feed efficiency (%) = (wet weight gain / dry feed intake) × 100.
††Protein efficiency ratio = (wet weight gain / protein intake).
‡‡Survival rate = (total fish – dead fish) × 100/ total fish.
§§Pooled standard error of means: SD/√n.

Table 4. Mercury concentrations (µg/g of wet matter basis) in muscle, liver and kidney of juvenile olive flounder fed the experimental diets for 8 weeks*

Diets†
Pooled 
SEM§

C0E0 C0E100 C0E200 C200E0 C200E100 C200E200 C400E0 C400E100 C400E200

Muscle ND‡ 9.95a 9.40ab 9.30ab 8.78bc 8.70bc 8.43c 8.34c 8.20c 0.12
Liver ND      19.9a    19.1ab     18.5abc     17.8bcd      17.5bcd     16.4def      16.1ef      14.5g 0.33
Kidney ND      20.3a    19.3ab     18.1abc      17.5bcd      16.9bcd     17.3bcd      16.7bcd      15.5cd 0.37

*Values are means from groups (n=3) of fish where the values in each row with different superscripts are significantly different (P < 0.05). 
†See Table 1. 
‡ND Indicates not detected.
§Pooled standard error of means: SD/√n.
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observed in muscle and liver of fish that were fed the C400E200 
and C400E100, and C400E200 diets, respectively. This was presum-
ably due to the ability of the antioxidant vitamins to neutralize 
mercury ions, or bind with transition metals and prevent ROS-
mediated oxidative damage in tissues (Ganther, 1980; Nandini 
and Lata, 2010).

In the present study, vitamins C and E acted synergistically 
against Hg accumulation, possibly because of the tendency of 
vitamin E to maintain vitamin C levels in damaged tissues by 
inhibiting free radical formation (Duval and Poelman, 1995). 
Vitamin C is also known to regenerate vitamin E from its oxi-
dized form (Bruno et al., 2006). Therefore, effective dispersal 
of Hg from –SH groups by these vitamins, along with their 
ability to inhibit and remove free radicals, might have reduced 
tissue Hg concentrations and helped to improve growth per-
formance (Fukino et al., 1984; Patil and Rao, 1999; Durak et 
al., 2010). In agreement with our findings, Guillot et al. (1998) 
reported that administration of 1,000 mg/kg ascorbic acid re-
duced Hg accumulation in multiple rat tissues. Rambeck et al. 
(1996) also confirmed the role of ascorbic acid to reduce the 
retention of inhaled Hg vapor. Durak et al. (2010) strength-
ened the present study`s findings by showing amelioration of 
Hg-induced toxicity through the combined effects of vitamin 
C and E, in vitro, using human erythrocytes. The reduction 
of Hg-driven mortality in Japanese quail (Welsh and Soares, 
1976) and improved growth and survival in Hg-exposed rats 
(Welsh, 1979) as a result of vitamin E supplementation has 
also been reported. Beyrouty and Chan (2006) also showed 
that mortality and poor growth resulting from MeHg accumu-
lation in rats could be improved by the synergistic action of 
vitamin E and Se.

In conclusion, poor growth performance resulting from 
MeHg accumulation were alleviated and the Hg concentration 
in muscle, liver, and kidney were reduced by dietary supple-
mentation of vitamins C (200 and 400 mg/kg) and E (100 and 
200 mg/kg) in juvenile olive flounder.
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