• Title/Summary/Keyword: method of moments (MOM)

Search Result 9, Processing Time 0.016 seconds

An analysis of Center-Fed Planar Dipole Antenna by method of moments (모멘트 방법에 의한 중앙급전식 평판 다이폴 안테나의 해석)

  • Yang, Sang-Yong;Lee, Tack-Kyung;Ra, Jung-Woong;Lee, Soo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.647-650
    • /
    • 1989
  • The driving-point impedance of the center-fed planar dipole antenna is obtained using the method of moments (MOM). For the thin dipole antenna, our numerical result is compared with that of the inverse method by D. R. Rhodes as well as the known solutions of equivalent wire antenna. For the frequencies of L-band and S-band, the driving-point impedances of the thick planar dipole antennas are measured by experiment and compared with the numerical results.

  • PDF

trunmnt: An R package for calculating moments in a truncated multivariate normal distribution

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.673-679
    • /
    • 2021
  • The moment calculation in a truncated multivariate normal distribution is a long-standing problem in statistical computation. Recently, Kan and Robotti (2017) developed an algorithm able to calculate all orders of moment under different types of truncation. This result was implemented in an R package MomTrunc by Galarza et al. (2021); however, it is difficult to use the package in practical statistical problems because the computational burden increases exponentially as the order of the moment or the dimension of the random vector increases. Meanwhile, Lee (2021) presented an efficient numerical method in both accuracy and computational burden using Gauss-Hermit quadrature. This article introduces trunmnt implementation of Lee's work as an R package. The Package is believed to be useful for moment calculations in most practical statistical problems.

A MOM-based algorithm for moving force identification: Part II - Experiment and comparative studies

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.155-169
    • /
    • 2008
  • A MOM-based algorithm (MOMA) has been developed for moving force identification from dynamic responses of bridge in the companion paper. This paper further evaluates and investigates the properties of the developed MOMA by experiment in laboratory. A simply supported bridge model and a few vehicle models were designed and constructed in laboratory. A series of experiments have then been conducted for moving force identification. The bending moment and acceleration responses at several measurement stations of the bridge model are simultaneously measured when the model vehicle moves across the bridge deck at different speeds. In order to compare with the existing time domain method (TDM), the best method for moving force identification to date, a carefully comparative study scheme was planned and conducted, which includes considering the effect of a few main parameters, such as basis function terms, mode number involved in the identification calculation, measurement stations, executive CPU time, Nyquist fraction of digital filter, and two different solutions to the ill-posed system equation of moving force identification. It was observed that the MOMA has many good properties same as the TDM, but its CPU execution time is just less than one tenth of the TDM, which indicates an achievement in which the MOMA can be used directly for real-time analysis of moving force identification in field.

A Study on Shell-Shaped Target Classification Using RCS and Fuzzy Classifier (RCS와 퍼지 구분기를 이용한 포탄 형태의 표적 식별기법에 대한 연구)

  • Lee, Seung-Jae;Jung, Sung-Jae;Kang, Byung-Soo;Na, Hyung-Gi;Kim, Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.576-584
    • /
    • 2014
  • In this paper, a study on the optimization of fuzzy classifier using radar cross section(RCS) values is presented to classify shell-shaped targets. Method of moments(MOM) is exploited to construct RCS database of generic shell-shaped targets in uniform angular intervals. Relative orientations are estimated from various flight scenarios of shell-shaped targets, and associated RCS values are interpolated from the generated RCS database with uniform angular intervals. Initial membership functions are determined using the interpolated RCS values, and particle swarm optimization(PSO) is utilized to optimize the membership functions of the fuzzy classifier in terms of probability of correct classification.

A MOM-based algorithm for moving force identification: Part I - Theory and numerical simulation

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • The moving vehicle loads on a bridge deck is one of the most important live loads of bridges. They should be understood, monitored and controlled before the bridge design as well as when the bridge is open for traffic. A MOM-based algorithm (MOMA) is proposed for identifying the timevarying moving vehicle loads from the responses of bridge deck in this paper. It aims at an acceptable solution to the ill-conditioning problem that often exists in the inverse problem of moving force identification. The moving vehicle loads are described as a combination of whole basis functions, such as orthogonal Legendre polynomials or Fourier series, and further estimated by solving the new system equations developed with the basis functions. A number of responses have been combined, some numerical simulations on single axle, two axle and multiple-axle loads, being either constant or timevarying, have been carried out and compared with the existing time domain method (TDM) in this paper. The illustrated results show that the MOMA has higher identification accuracy and robust noise immunity as well as producing an acceptable solution to ill-conditioning cases to some extent when it is used to identify the moving force from bridge responses.

Transmission Cross Section of the Small Aperture in an Infinite Conducting Plane (도체 평판에서 소형 개구의 투과 단면적)

  • Ko, Ji-Hwan;Park, Soon-Woo;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.300-306
    • /
    • 2019
  • Transmission cross section(TCS) is described analytically as $2G{\lambda}^2/4{\pi}$ irrespective of the aperture shapes for various transmission resonant apertures, such as small ridged circular or H-shaped, U-shaped, or Jerusalem cross-shaped apertures in an infinite thin conducting plane. The proposed expression is validated by comparison with the numerical results obtained from the method of moments(MOM). The TCS characteristics of the transmission resonant cavity structure in a thick conducting plane are also studied and the equivalence between the two small aperture structures is reported from the viewpoint of transmission efficiency.

Derivation of Rainfall Intensity-Duration-Frequency Equation Based on the Approproate Probability Distribution (지속기간별 강우자료의 적정분포형 선정을 통한 확률강우강도식의 유도)

  • Heo, Jun-Haeng;Kim, Gyeong-Deok;Han, Jeong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.247-254
    • /
    • 1999
  • The frequency analyses of annual maximum rainfall data for 22 rainfall gauging stations is Korea were performed. The method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) were used in parameter estimation. The GEV distribution was selected as an appropriate model for annual maximum rainfall data based on parameter validity condition, graphical analysis, separation effect, and goodness of fit tests. For the selected GEV model, spatial analysis was performed and rainfall intensity-duration-frequency equation was derived by using linearization technique. The derived rainfall intensity-duration-frequency equation can be used for estimating rainfall quantiles of the selected stations with convenience and reliability in practice.

  • PDF

A Study of Accuracy Improvement for Scattering Analysis of FMM Method (FMM 기법의 산란해석 정확도 향상 연구)

  • Kim, Young-joo;Cho, Young-Ki;Son, Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.972-982
    • /
    • 2001
  • FMM(Fast Multipole Method) is suitable numerical method for radar cross section calculation of arbitrary large conducting bodies due to reduction of computation time. The accuracy of the numerical results, however, can influenced by selection of grouping method and segment length, in particular, far the case that cross section of the scatter is of the narrow width elliptical type. So, we describe the FMM method which can be deal effectively with such difficulties for both TM and TE polarization case. In order to check the present method the results are compared with those obtained by Method of Moments.

  • PDF

Analysis of flexural fatigue failure of concrete made with 100% coarse recycled and natural aggregates

  • Murali, G.;Indhumathi, T.;Karthikeyan, K.;Ramkumar, V.R.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.291-298
    • /
    • 2018
  • In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.