• 제목/요약/키워드: method of cumulative frequency square root

검색결과 2건 처리시간 0.017초

군집분석을 이용한 다목적 조사의 층화에 관한 연구 (A Study on the Use of Cluster Analysis for Multivariate and Multipurpose Stratification)

  • 박진우;윤석훈;김진흠;정형철
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.387-394
    • /
    • 2007
  • 본 연구는 여러 가지의 양적변수들을 조사하는 다목적, 다변량조사 표본설계에서 층화 문제를 다룬다. 다변량 층화변수를 사용하는 층화 방법으로 일변량 층화변수가 있을 때 사용하는 누적도수제곱근법을 독립적으로 여러 층화변수에 적용하는 방법, 군집분석을 이용하는 방법, 인자분석과 군집분석을 함께 이용하는 방법 등 세 가지 방법을 제시한다. 한편, 2001년 농업총조사 자료에 나타난 동 읍 면의 농기계별 보유대수 정보를 층화변수로 활용하여 세 가지 층화 방안의 효율을 실증적으로 비교하게 되는데 그 결과 인자분석과 군집분석을 함께 고려한 층화방법이 비교적 효율적인 것으로 나타났다.

와이블 풍속 분포 파라미터 추정을 위한 Ln­least 방법의 확률도시위치 적용 (An Application of the Probability Plotting Positions for the Ln­least Method for Estimating the Parameters of Weibull Wind Speed Distribution)

  • 강동범;고경남
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.11-25
    • /
    • 2018
  • The Ln-least method is commonly used to estimate the Weibull parameters from the observed wind speed data. In previous studies, the bin method has been used to calculate the cumulative frequency distribution for the Ln-least method. The purpose of this study is to obtain better performance in the Ln-least method by applying probability plotting position(PPP) instead of the bin method. Two types of the wind speed data were used for the analysis. One was the observed wind speed data taken from three sites with different topographical conditions. The other was the virtual wind speed data which were statistically generated by a random variable with known Weibull parameters. Also, ten types of PPP formulas were applied which were Hazen, California, Weibull, Blom, Gringorten, Chegodayev, Cunnane, Tukey, Beard and Median. In addition, in order to suggest the most suitable PPP formula for estimating Weibull parameters, two accuracy tests, the root mean square error(RMSE) and $R^2$ tests, were performed. As a result, all of PPPs showed better performances than the bin method and the best PPP was the Hazen formula. In the RMSE test, compared with the bin method, the Hazen formula increased estimation performance by 38.2% for the observed wind speed data and by 37.0% for the virtual wind speed data. For the $R^2$ test, the Hazen formula improved the performance by 1.2% and 2.7%, respectively. In addition, the performance of the PPP depended on the frequency of low wind speeds and wind speed variability.