• 제목/요약/키워드: method: numerical simulations

검색결과 1,418건 처리시간 0.026초

Bayesian updated correlation length of spatial concrete properties using limited data

  • Criel, Pieterjan;Caspeele, Robby;Taerwe, Luc
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.659-677
    • /
    • 2014
  • A Bayesian response surface updating procedure is applied in order to update the parameters of the covariance function of a random field for concrete properties based on a limited number of available measurements. Formulas as well as a numerical algorithm are presented in order to update the parameters of response surfaces using Markov Chain Monte Carlo simulations. The parameters of the covariance function are often based on some kind of expert judgment due the lack of sufficient measurement data. However, a Bayesian updating technique enables to estimate the parameters of the covariance function more rigorously and with less ambiguity. Prior information can be incorporated in the form of vague or informative priors. The proposed estimation procedure is evaluated through numerical simulations and compared to the commonly used least square method.

Large-scale Structure Studies with Mock Galaxy Sample from the Horizon Run 4 & Multiverse Simulations

  • Hong, Sungwook E.
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.29.3-29.3
    • /
    • 2020
  • Cosmology is a study to understand the origin, fundamental property, and evolution of the universe. Nowadays, many observational data of galaxies have become available, and one needs large-volume numerical simulations with good quality of the spatial distribution for a fair comparison with observation data. On the other hand, since galaxies' evolution is affected by both gravitational and baryonic effects, it is nontrivial to populate galaxies only by N-body simulations. However, full hydrodynamic simulations with large volume are computationally costly. Therefore, alternative galaxy assignment methods to N-body simulations are necessary for successful cosmological studies. In this talk, I would like to introduce the MBP-galaxy abundance matching. This novel galaxy assignment method agrees with the spatial distribution of observed galaxies between 0.1Mpc ~ 100Mpc scales. I also would like to introduce mock galaxy catalogs of the Horizon Run 4 and Multiverse simulations, large-volume cosmological N-body simulations done by the Korean community. Finally, I would like to introduce some recent works with those mock galaxies used to understand our universe better.

  • PDF

3D Modeling of a Fabric based on its 3D Microstructure Image and Application of the Model of the Numerical Simulation of Heat Transfer

  • Lee, Hyojeong;Lee, Heeran;Eom, Ran-i;Lee, Yejin
    • 패션비즈니스
    • /
    • 제20권3호
    • /
    • pp.30-42
    • /
    • 2016
  • The objective of this study was to perform 3D solid modeling from 3D scanned surface images of cotton and silk in order to calculate the thermal heat transfer responses using numerical simulations. Continuing from the previous methodology, which provided 3D surface data for a fabric through optical measurements of the fabric microstructure, a simplified 3D solid model, containing a defined unit cell, pattern unit and fabric structure, was prepared. The loft method was used for 3D solid-model generation, and heat transfer calculations, made for the fabric, were then carried out using the 3D solid model. As a result, comprehensive protocols for 3D solid-model generation were established based on the optical measurements of real fabric samples. This method provides an effective means of using 3D information for building 3D models of actual fabrics and applying the model in numerical simulations. The developed process can be used as the basis for other analogous research areas to investigate the physical characteristics of any fabrics.

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

제방축조재료의 응력-변형거동 예측을 위한 실내시험 및 수치해석 (Laboratory Tests and Numerical Simulations for Prediction of Stress-Stain Behavior Using Construction Materials for Embankment)

  • 정상국;구자갑
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.215-219
    • /
    • 2010
  • 본 연구에서는 제방 축조재료로 사용되는 낙동강 모래의 응력-변형 거동특성 파악을 위하여, 삼축압축시험 등을 포함한 실내시험을 실시하였고, 조립재료의 거동 표현에 적합한 개별요소방법을 적용한 수치 모델링을 실시하였다. 개별요소해석은 삼축압축시험 과정을 모델링하였으며, 이때 이용된 미시물성치는 물성치 보정과정을 통해 산정 되었다. 특정 구속압조건을 만족시키는 미시 물성치의 산정이 가능하다면, 이 미시물성치의 이용을 통해 다른 구속압조건 및 응력재하 조건에서의 거동예측에 있어, 개별요소방법이 매우 효과적으로 이용될 수 있음을 알 수 있었다.

Multi-fidelity modeling and analysis of a pressurized vessel-pipe-safety valve system based on MOC and surrogate modeling methods

  • Xueguan Song;Qingye Li;Fuwen Liu;Weihao Zhou;Chaoyong Zong
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3088-3101
    • /
    • 2023
  • A pressurized vessel-pipe-safety valve (PVPSV) combination is a commonly used configuration in nuclear power plants, and a good numerical model is essential for the system design, sizing and performance optimization. However, owing to the large-scale and cross-scale features, it is still a challenge to build a system level numerical model with both high accuracy and efficiency. To overcome this, a novel system level modeling method which can synthesize the advantages of various models is proposed in this paper. For system modeling, the analytical approach, the method of characteristics (MOC) and the surrogate model approach are respectively adopted to predict the dynamics of the pressure vessel, the connecting pipe and the safety valve, and different models are connected through data interfaces. With this system model, dynamic simulations were carried out and both the stable and the unstable system responses were obtained. For the model verification purpose, the simulation results were compared with those obtained from experiments and full CFD simulations. A good agreement and a better efficiency were obtained, verifying the ability of the model and the feasibility of the modeling method proposed in this paper.

Numerical Investigation of an Unconditionally Stable Compact 2D FDTD Based on the Alternating-Direction Implicit Scheme

  • Saehoon Ju;Jeongnam Cheon;Kim, Hyung-Hoon;Kim, Hyeongdong
    • Journal of electromagnetic engineering and science
    • /
    • 제3권1호
    • /
    • pp.39-44
    • /
    • 2003
  • An unconditionally stable compact 2D Alternating-Direction Implicit (ADI) FDTD method for calculating dispersion characteristics of waveguide structures is proposed. The numerical stability and numerical dispersion relation of the proposed method are also presented and discussed. Numerical wavelengths for the dominant and higher order modes in a hollow waveguide are obtained from numerical simulations and compared with those from the analytical dispersion relation. The numerical results show that the proposed scheme has the potential to successfully analyze a class of waveguides having locally fine geometry with reduced numerical costs.

디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션 (NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK)

  • 박종천;김경성
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

2단식 Weis-Foghg형 선박 추진기구의 유동장 특성계산 (Flowfield Calculation for Ship's Propulsion Mechanism of Two-Stage Weis-Fogy Type)

  • 노기덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.371-380
    • /
    • 1998
  • The flow patterns and dynamic properties of ship's propulsion mechanism of two-stage Weis-Fogh type are studied by the discrete vortex method. In order to study the effects of the interaction of the two wings two cases of the phase differences of the wing's motion are considered the same phase and the reverse phase. The flow patterns by simulations correspond to the photographs obtained by flow visualization and flowfield of the propulsion mechanism which is unsteady and complex is clearly visualized by numerical simulations. The time histories of the thrust an the drag coefficients on the wings are also calculated and the effects of the interaction of the two wings are numerically clarified.

  • PDF

원형 실린더 주위의 비정상 이차원 층류유동 수치해석 (Unsteady 2-D Laminar Flow Simulation past a Circular Cylinder)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.41-47
    • /
    • 2004
  • The paper presents numerical simulations of laminar vortex-shedding flows past a circular cylinder for Re ≤ 500. The simulations are performed by solving the unsteady 2-D Navier-Stokes equations with a finite volume method using unstructured grid system. The resulting Reynolds number dependence of the Strouhal number and of the drag and lift coefficients is compared with experiments and with previous numerical results, showing good agreement. It is found that, for the truly laminar Reynolds number range the present calculation method described is capable of producing reasonably accurate results for the main practically relevant parameters such as Strouhal number, drag and lift coefficients.