• Title/Summary/Keyword: methane hydrate

Search Result 121, Processing Time 0.021 seconds

Methane hydrate formation Using Carbon Nano Tubes (탄소나노튜브를 이용한 메탄 하이드레이트 형성)

  • Park, Sung-Seek;Seo, Hyang-Min;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.549-552
    • /
    • 2009
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity at specially temperature and pressure condition, and water molecule and each other from physically-bond. $1m^3$ hydrate of pure methane can be decomposed to the maximum of $172m^3$ at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18~24% less than the liquefied transportation. However, when methane hydrate is formed artificially, the amount of consumed gas is relatively low due to a slow reaction rate between water and methane gas. In this study, for the better hydrate reaction rate, there is make nano fluid using ultrasonic dispersion of carbon nano tube. and then, Experiment with hydrate formation by nano fluid and methane gas reaction. The results show that when the carbon nano tubes of 0.004 wt% was added to pure water, the amount of consumed gas was about 300% higher than that in pure water and the hydrate formation time decreased.

  • PDF

Effect of Oxidation Multi-Walled Carbon Nanotubes for Methane Hydrate Formation (산화탄소나노튜브를 이용한 메탄 하이드레이트 형성)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.11-16
    • /
    • 2010
  • Methane hydrate is crystalline ice-like compounds which formed methane gas enters within water molecules composed cavity and each other from physically-bond at specially temperature and pressure condition. $1m^3$ of methane hydrate can be decomposed into the maximum of $216m^3$ of methane gas under standard condition. If these characteristics of hydrate are utilized in the opposite sense, natural gas can be fixed into water in the form of a hydrate solid. Therefore the use of hydrate is considered to be a great way to transport and store natural gas in large quantity. However, when methane hydrate is formed artificially, the amount of gas that is consumed is relatively low, due to the slow reaction rate between water and methane gas. Therefore for practical purposes in the application, the present investigation focuses on increasing the amount of gas consumed by adding chemically oxidized OMWCNTs to pure water. The results show that when 0.003 wt% of oxidation multi-walled carbon nanotubes was added to pure water, the amount of gas consumed was almost four times more than that of pure water indicating its effect in hydrate formation and the hydrate formation time decreased at alow subcooling temperature.

A Comparative Study on the Effect of THF and Oxidized Carbon Nanotubes for Methane Hydrate Formation (메탄 하이드레이트 생성을 위한 THF와 산화 탄소나노튜브의 영향에 대한 비교 연구)

  • Park, Sung-Seek;An, Eoung-Jin;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.769-775
    • /
    • 2011
  • Methane hydrate is formed by physical binding between water molecules and methane gas, which is captured in the cavities of water molecules under the specific temperature and pressure. $1m^3$ hydrate of pure methane can be decomposed to the methane gas of $172m^3$ and water of $0.8m^3$ at standard condition. Therefore, there are a lot of practical applications such as separation processes, natural gas storage transportation and carbon dioxide sequestration. For the industrial utilization of hydrate, it is very important to rapidly manufacture hydrate. So in this study, hydrate formation was experimented by adding THF and oxidized carbon nanotubes in distilled water, respectively. The results show that when the oxidized carbon nanofluids of 0.03 wt% was, the amount of gas consumed during the formation of methane hydrate was higher than that in the THF aqueous solution. Also, the oxidized carbon nanofluids decreased the hydrate formation time to a greater extent than the THF aqueous solution at the same subcooling temperature.

메탄 하이드레이트의 부존 가능성과 평형조건

  • 류병재;허대기;선우돈;정태진;김현태;김세준;이호섭
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.56-65
    • /
    • 1998
  • Methane hydrate is ice-like solid compound consisting of mainly methane and water, and is stable under specific low temperature and high pressure conditions (HSZ : methane hydrate stability zone) that occurs in permafrost regions and in the ocean floor sediments. Geophysical survey was implemented in the southern area of the East Sea, and the HSZ of the study area is determined by the temperature, pressure and local heat flow obtained from the survey and well data. In the study area, methane hydrates could exist in the sediments below the water depths of about $300{\cal}m$, and the base of HSZ is about 600m beneath the seafloor. The acoustically blanking zones in the sediment and phenomena of gas seepage were detected from the seismic section. These sediments have the sufficient physical condition for the formation of methane hydrate. The temperature and pressure conditions were experimentally measured for the dissociation of methane and propane hydrates in Pure water. Equilibrium conditions of methane and propane hydrates were obtained in the pressure range up to 19050Kpa and 401.3Kpa. Under same temperature condition, propane hydrate was dissociated at lower pressure than that of methane hydrate.

  • PDF

An analysis of the influence on the formation kinetics of methane hydrate (메탄 하이드레이트 생성 속도에 미치는 영향 분석)

  • Lee Young Chul;Cho Byoung Hak;Baek Young Soon;Lee Woo Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.55-62
    • /
    • 2001
  • This paper describes about the formation of methane hydrate that is artificially made in jacket-type stirred reactor and is observed the change of hydrate shape during the course of reaction. The combustion of manufactured methane hydrate is showed the probability of a storage and transport of gas. And the influence of various experimental conditions of temperature, pressure and stirring rate on the manufacture of methane hydrate is measured. The growth rate and the induction time of methane hydrate is observed according to the conditions. Especially it is important to investigate the effect of temperature and pressure on the growth of hydrate such as the nuclear creation and the structure formation of hydrate in order to study the storage and transport of gas.

  • PDF

Development of a Numerical Simulator for Methane-hydrate Production (메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.67-75
    • /
    • 2014
  • Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.

A Experimental Study of the Kinetic Characteristics of Methane Hydrate (메탄 하이드레이트 동적특성에 대한 실험적 연구)

  • Kim, Nam-Jin;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2006
  • Methane hydrate, non-polluting new energy resource, satisfies requirement and considered as a precious resource that can prevent the global warming. Fortunately, there are abundant resources of methane hydrate distribute in the earth widely. Therefore, developing the techniques that can utilize these gases effectively is highly desired. The work in this paper here is to develop a skill which can transport and store methane hydrate. As a first step, the equilibrium experiment was carried out by increasing temperatures in the cell at fixed pressures. The influence of gas consumption rates under variable degree of subcooling, stirring and water injection has been investigated formation to clarify kinetic characteristics of the hydrate. The results of present investigation showed that the enhancements of the hydrate formation in terms of the gas/water ratio are closely related to operational pressure, temperature, degrees of subcooling, and water injection.

A Comparative Study on the Formation of Methane Hydrate Using Natural Zeolite and Synthetic Zeolite 5A (천연 제올라이트와 합성 제올라이트 5A를 이용한 메탄 하이드레이트의 생성에 대한 비교 연구)

  • Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.24-32
    • /
    • 2012
  • Natural gas hydrates have a high potential as the 21st century new energy resource, because it have a large amount of deposits in many deep-water and permafrost regions of the world widely. Natural gas hydrate is formed by physical binding between water molecule and gas mainly composed of methane, which is captured in the cavities of water molecules under the specific temperature and pressure. $1m^3$ methane hydrate can be decomposed to the methane gas of $172m^3$ and water of $0.8m^3$ at standard condition. Therefore, there are a lot of practical applications such as separation processes, natural gas storage transportation and carbon dioxide sequestration. For the industrial utilization of methane hydrate, it is very important to rapidly manufacture hydrate. However, when methane hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. So in this study, hydrate formation was experimented by adding natural zeolite and Synthetic zeolite 5A in distilled water, respectively. The results show that when the Synthetic zeolite 5A of 0.01 wt% was, the amount of gas consumed during the formation of methane hydrate was higher than that in the natural zeolite. Also, the natural zeolite and Synthetic zeolite 5A decreased the hydrate formation time to a greater extent than the distilled water at the same subcooling temperature.

A Study on the Methane Hydrate Formation Using Natural Zeolite (천연제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;An, Eoung-Jin;Kim, Dae-Jin;Jeon, Yong-Han;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.259-264
    • /
    • 2011
  • Gas hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. $1\;m^3$ hydrate of pure methane can be decomposed to the methane gas of $172\;m^3$ and water of $0.8\;m^3$ at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store of natural gas in large quantity. Especially the transportation cost is known to be 18~25% less than the liquefied transportation. However, when methane gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and the increment of the amount of captured gas by adding zeolite into pure water. The results show that when the zeolite of 0.01 wt% was added to distilled water, the amount of captured gas during the formation of methane hydrate was about 4.5 times higher than that in distilled water, and the methane hydrate formation time decreased at the same subcooling temperature.

Study on Methane Hydrate Formation in Seawater and Pure Water (해수와 순수물에서 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.34-40
    • /
    • 2009
  • $1m^3$ hydrate of pure methane can be decomposed to the maximum of $216m^3$ methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18-24% less than the liquefied transportation. In the present investigation, experiments and theoretical calculation carried out for the formation of methane hydrate in NaCl 3.5wt% solution. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions. Therefore, it is found that NaCl acts as a inhibitor.