• Title/Summary/Keyword: methacrylate

Search Result 1,258, Processing Time 0.024 seconds

Polymerization Shrinkage and Stress of Silorane-based Dental Restorative Composite (Silorane-기질 치아 수복용 복합레진의 중합수축과 중합수축응력)

  • Lee, In-Bog;Park, Sung-Hwan;Kweon, Hyun-Jeong;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.182-188
    • /
    • 2013
  • The purpose of this study was to measure the volumetric polymerization shrinkage kinetics and stress of a silorane-based dental restorative composite and compare it with those of conventional methacrylate-based dental composites. Two methacrylate-based composites (Z250, Z350 flowable) and one silorane-based composite (P90) were investigated. The volumetric polymerization shrinkage of the composites during light curing was measured using a laboratory-made volume shrinkage measurement instrument based on the Archimedes' principle, and the polymerization stress was also determined with the strain gage method. The shrinkage of silorane-based composites (P90) was the lowest, and that of Z350 flowable was the highest. Peak polymerization shrinkage rate was the lowest in P90 and the highest in Z350 flowable. The time to reach peak shrinkage rate of P90 was longer than those of the methacrylate-based composites. The polymerization shrinkage stress of P90 was lower than those of the methacrylate-based composites.

Preparation of Waterborne Polyurethane-Acrylic Hybrid Solutions from Different Types of Acrylate Monomers (아크릴 단량체의 종류 변화에 의한 수분산 폴리우레탄-아크릴 혼성 용액의 제조)

  • Kim, Byung Suk;Hong, Min Gi;Yoo, Byung Won;Lee, Myung Goo;Lee, Woo Il;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.410-416
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different types of acrylate monomers, such as HEMA (2-hydroxyethyl methacrylate):MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:BMA (butyl methacrylate), HEMA:HEA (2-hydroxyethyl acrylate), HEMA:PETA (pentaerytritol triacrylate) mixture. Also, the effects of acrylate types on the chemical resistance and the abrasion resistance of polyurethane-acrylic hybrid solutions were investigated. The test results showed that the HEMA:MMA mixture had the strongest chemical resistance, while the HEMA:PETA mixture had the strongest abrasion resistance among several types of acrylate mixtures.

Synthesis of Well-Defined Block Copolymer Dispersants with (2-Dimethylamino)ethyl Methacrylate and Oligo(ethylene oxide)methyl Ether Methacrylate via ATRP for Dispersing Copper Phthalocyanine Pigment (Copper Phthalocyanine Pigment의 분산을 위한 (2-Dimethylamino)ethyl Methacrylate와 Oligo(ethylene oxide)methyl Ether Methacrylate를 포함하는 잘 규정된 블록 공중합체형 분산제의 원자 이동 라디칼 중합을 이용한 합성)

  • Kim, Eun-Hee;Kim, Bong-Soo;Jung, Ki-Suk;Kim, Jin-Goo;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • The dispersion of pigment particles is important because it is capable of increasing the color strength, contrast, and transmittance of color-LCD products. Pigment dispersion properties are very important factors for the quality of LCD color filters. The chemical structure of polymeric dispersants for pigment is important to improve dispersion stability and prevent aggregation or flocculation of pigment in organic or aqueous systems. Polymeric dispersants should contain both anchoring group that interacts with pigment surface and stabilizing group that provides steric stabilization. Moreover, the molecular weight and composition of block copolymer have the an effect on pigment dispersion. In this study, adequate dispersants, block copolymers containing (2-dimethylamino)ethyl methacrylate as anchoring group and oligo(ethylene oxide)methyl ether methacrylate as a stabilizing group were designed and synthesized by atom transfer radical polymerization in order to prepare well-defined structure, molecular weight and composition.

Enzymatic Synthesis of Methyl Fructoside Acrylate and Methacrylate (메틸프룩토시드 아크릴레이트와 메타크릴레이트의 효소적 합성)

  • Sung, Duk-Yong;Kim, Hae-Sung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.89-94
    • /
    • 2000
  • Methyl fructoside acrylate and methacrylate were synthesized by lipase-catalyzed glycosylation of acrylic acid, methacrylic acid and vinyl methacrylate with ${\beta}$-methyl fructoside in t-butanol as a reaction medium. From the optimum conditions of enzymatic synthesis for acrylate and methacrylate, we obtained 78% conversion for methyl fructoside acrylate and 93% conversion for methyl fructoside methacrylate. The polymerizable sugar acrylates have potential application as biomedical polymer such as hodrogel contact lens.

  • PDF

Development of Washable Wool Using Environmental-friendly Spray UV-cure Finishing Technique - Using Photocrosslinkable Polymerr Dextran-methacrylate- (환경친화적 Spray UV-Cure 가공 기술을 이용한 물세탁 모직물(washable wool)의 개발 -광가교 고분자인 dextran-methacrylate를 이용하여-)

  • 김신희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.11
    • /
    • pp.1507-1515
    • /
    • 2004
  • Washable wool was developed using environmental-friendly spray UV-cure technique. Photocrosslinkable polymer, dextran-methacrylate, was synthesized starting from natural biopolymer, dextran. The aqueous solution of dextran-methacrylate was applied to wool fabric with various concentrations to find out the optimum condition in minimizing felting shrinkage. The wool fabric subsequently cured by 365 nm UV, The effects of UV-cure time and photoinitiator concentration on felting behavior of wool were examined. As the concentration of dextran-methacrylate increased, the felting shrinkage decreased gradually. At concentration 0.5g/ml, the felting shrinkage of wool was negligible. Other properties such as air permeability, moisture content, wrinkle recovery, thickness and wettability were also evaluated. The surface coating of dextran polymer onto wool fiber was identified by SEM.

Synthesis of block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) by ATRP (atom transfer radical polymerization) (ATRP(atom transfer radical polymerization)에 의한 polystyrene과 poly ethylene glycol methyl ether methacrylate(PEGMA)의 블록 공중합체의 합성)

  • Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.306-316
    • /
    • 2009
  • In this study, block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) by ATRP(atom transfer radical polymerization) method was synthesized. 4 arm-molecule which contained halogen atom was synthesized for an initiator. With 4 arm-molecule monodispered polystyrene were synthesized by ATRP method. The molecular change of synthesized monodispersed polystyrene with respect to time was investigated and living polymer characteristic was confirmed. Block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) was synthesized by ATRP with macroinitiator which was synthesized from the monodispersed polystyrene(Mn=12000). The molecular weight of obtained PS-b-PEGMA was 22,000.

Permeation Characteristics of Poly(Hydroxypropyl Methacrylate) membrane having Tertiary Amine Moiety (Tertiary Amine을 포함하는 Hydroxypropyl Methacrylate 고분자막의 투과특성)

  • Hon, Jae-Min;Shim, Jyong-Sup
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.154-160
    • /
    • 1990
  • Hydroxypropyl methacrylate polymeric membranes having tertiary amine moiety were prepared to control the release rate of insulin in response to the concentration of glucose. Hydroxypropyl methacrylate was copolymerized with N, N'-diethylaminoethylacrylate. Its water content was increased with decreasing the pH of the medium and was reversible with variation of the pH of the medium. The permeation coefficient of insulin through copolymer membrane was also increased with decreasing the pH of the medium. Combining this copolymer membrane and the glucose oxidase immobilized membrane as a sensor for glucose, composite membrane was prepared. The permeability of this composite membrane was increased with addition of glucose.

  • PDF

Synthesis and Properties of Poly(BMA-co-PEGMA) Microspheres (Poly(BMA-co-PEGMA) Microsphere의 합성 및 특성)

  • Chun, Yong Jin;Cho, Suk Hyung;Lee, Gun Jik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5299-5303
    • /
    • 2013
  • Poly(butyl methacrylate-co-polyethyleneglycol methacrylate) (Poly(BMA-co-PEGMA)) microsphere was prepared by precipitation copolymerization of PEGMA and butyl methacrylate in ethanol solution. Microspheres were controlled by experimantal conditions 140nm to 210nm. The particle size of Poly(BMA-co-PEGMA) microspheres was decreased with increasing the concentration of PEGMA and increased with BMA of monomer.

The Effect of Crosslinking on the Actuation of Electroactive IPMC Prepared with Fluoroalkyl Methacrylate/Acrylic Acid/HEMA Copolymer (Fluoroalkyl Methacrylate/Acrylic Acid/2-HEMA 공중합체로 제조한 IPMC의 구동 특성에 미치는 가교의 영향)

  • Jeong, Han-Mo;La, Young-Soo
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.463-467
    • /
    • 2005
  • In order to enhance the actuation force of ionic polymer-metal composite (IPMC) made with the acrylic copolymer of fluoroalkyl methacryate, acrylic acie, and 2-hydroxyethyl methacrylate(HEMA), the hydroxy group of HEMA was corsslinked with 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane. The water uptake was reduced and the mechanical strengths and the actuation force of the membrane was improved by crosslinking. However, current and deformation responses of IPMC were decreased by crosslinking.