DOI QR코드

DOI QR Code

Silorane-기질 치아 수복용 복합레진의 중합수축과 중합수축응력

Polymerization Shrinkage and Stress of Silorane-based Dental Restorative Composite

  • 이인복 (서울대학교 치의학대학원 보존학교실) ;
  • 박성환 (서울대학교 대학원 치의과학 전공) ;
  • 권현정 (서울대학교 치의학대학원 보존학교실) ;
  • 구자국 (서울대학교 치의학대학원) ;
  • 최낙삼 (한양대학교 기계공학과)
  • 투고 : 2013.05.10
  • 심사 : 2013.06.22
  • 발행 : 2013.06.30

초록

본 연구의 목적은 silorane 기질의 치아 수복용 복합레진의 중합수축과 수축응력의 동력학을 평가하고 전통적인 methacrylate 기질의 복합레진과 비교하기 위함이다. 두 종의 methacrylate 기질의 복합레진(Z250, Z350 flowable)과 silorane 기질 복합레진(P90)이 사용되었다. 아르키메데스 원리를 응용해 자체 제작한 중합수축 측정 장치를 사용하여 광중합 중 일어나는 복합레진의 체적 중합수축을 측정하였고 스트레인게이지로 중합수축응력을 측정하였다. Silorane 기질 복합레진인 P90의 중합수축과 최대 중합수축률이 가장 낮았고 methacrylate 기질 복합레진인 Z350 flowable이 가장 높았다. Methacrylate 기질의 복합레진과 비교하여 silorane 기질의 복합레진 P90이 최대 수축률에 이른 시간은 더 길었고 중합수축응력은 낮았다.

The purpose of this study was to measure the volumetric polymerization shrinkage kinetics and stress of a silorane-based dental restorative composite and compare it with those of conventional methacrylate-based dental composites. Two methacrylate-based composites (Z250, Z350 flowable) and one silorane-based composite (P90) were investigated. The volumetric polymerization shrinkage of the composites during light curing was measured using a laboratory-made volume shrinkage measurement instrument based on the Archimedes' principle, and the polymerization stress was also determined with the strain gage method. The shrinkage of silorane-based composites (P90) was the lowest, and that of Z350 flowable was the highest. Peak polymerization shrinkage rate was the lowest in P90 and the highest in Z350 flowable. The time to reach peak shrinkage rate of P90 was longer than those of the methacrylate-based composites. The polymerization shrinkage stress of P90 was lower than those of the methacrylate-based composites.

키워드

참고문헌

  1. Davidson, C.L., and Feilzer, A.J., "Polymerization Shrinkage and Polymerization Shrinkage Stress in Polymer-based Restoratives," Journal of Dentistry, Vol. 25, 1997, pp. 435-440. https://doi.org/10.1016/S0300-5712(96)00063-2
  2. Peutzfeld, A., "Resin Composites in Dentistry: The Monomer Systems," European Journal of Oral Sciences, Vol. 105, 1997, pp. 97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
  3. Braga, R.R., and Ferracane, J.L., "Alternatives in Polymerization Contraction Stress Management," Critical Reviews in Oral Biology & Medicine, Vol. 15, 2004, pp. 176-184. https://doi.org/10.1177/154411130401500306
  4. Kleverlaan, C.J., and Feilzer A.J., "Polymerization Shrinkage and Contraction Stress of Dental Resin Composites," Dental Materials, Vol. 21, 2005, pp. 1150-1157. https://doi.org/10.1016/j.dental.2005.02.004
  5. Song, Y.X., and Inoue, K., "Linear Shrinkage of Photo-activated Composite Resins During Setting," Journal of Oral Rehabilitation, Vol. 28, 2001, pp. 335-341. https://doi.org/10.1046/j.1365-2842.2001.00661.x
  6. Lee, I.B., Cho, B.H., Son, H.H., and Um, C.M., "A New Method to Measure the Polymerization Shrinkage Kinetics of Light Cured Composites," Journal of Oral Rehabilitation, Vol. 32, 2005, pp. 304-314. https://doi.org/10.1111/j.1365-2842.2004.01414.x
  7. Feilzer, A.J., de Gee, A.J., and Davidson, C.L., "Setting Stress in Composite Resin in Relation to Configuration of the Restoration," Journal of Dental Research, Vol. 66, 1987, pp. 1636-1639. https://doi.org/10.1177/00220345870660110601
  8. Venhoven, B.A.M., de Gee, A.J., and Davidson, C.L., "Polymerization Contraction and Conversion of Light-curing BisGMABased Methacrylate Resins," Biomaterials, Vol. 14, 1993, pp. 871-875. https://doi.org/10.1016/0142-9612(93)90010-Y
  9. Palin, W.M., Fleming, G.J.P., Nathwani, H., Burke, F.J.T., and Randall, R.C., "In vitro Cuspal Deflection and Microleakage of Maxillary Premolars Restored with Novel Low-shrink Dental Composites," Dental Materials, Vol. 21, 2005, pp. 324-335. https://doi.org/10.1016/j.dental.2004.05.005
  10. Stansbury, J.W., Trujillo-Lemon, M., Lu, H., Ding, X., Lin, Y., and Ge, J., "Conversion-dependent Shrinkage Stress and Strain in Dental Resins and Composites," Dental Materials, Vol. 21, 2005, pp. 56-67. https://doi.org/10.1016/j.dental.2004.10.006
  11. Weinmann, W., Thalacker, C., and Guggenberg, R., "Siloranes in Dental Composites," Dental Materials, Vol. 21, 2005, pp. 68-74. https://doi.org/10.1016/j.dental.2004.10.007
  12. Miletic, V., Ivanovic, V., Dzeletovic, B., and Lezaja M., "Temperature Changes in Silorane-, Ormocer-, and Dimethacrylatebased Composites and Pulp Chamber Roof During Light-curing," Journal of Esthetic and Restorative Dentistry, Vol. 21, 2009, pp. 122-132. https://doi.org/10.1111/j.1708-8240.2009.00244.x
  13. Papadogiannis, D., Kakaboura, A., Palaghias, G., and Eliades, G., "Setting Characteristics and Cavity Adaptation of Lowshrinking Resin Composites," Dental Materials, Vol. 25, 2009, pp. 1509-1516. https://doi.org/10.1016/j.dental.2009.06.022
  14. Boaro, L.C., Goncalves, F., Guimaraes, T.C., Ferracane, J.L., Versluis, A., and Braga, R.R., "Polymerization Stress, Shrinkage and Elastic Modulus of Current Low-shrinkage Restorative Composites," Dental Materials, Vol. 26, 2010, pp. 1144-1150. https://doi.org/10.1016/j.dental.2010.08.003
  15. Gao, B.T., Lin, H., Zheng, G., Xu, Y.X., and Yang, J.L., "Comparison Between a Silorane-based Composite and Methacrylate-based Composites: Shrinkage Characteristics, Thermal Properties, Gel Point and Vitrification Point," Dental Materials Journal, Vol. 28, 2012, pp. 76-85. https://doi.org/10.1016/j.dental.2012.04.013
  16. Lee, I.B., "A New Method - Real Time Measurement of Initial Dynamic Volumetric Shrinkage of Composite Resins During Polymerization," Journal of Korean Academy of Conservative Dentistry, Vol. 26, 2001, pp. 34-140.
  17. Riley, W.F., Sturges, L.D., and Morris, D.H., Mechanics of Materials, 5th ed., John Wiley & Sons, Inc. pp. 249-252, 1999.
  18. Gu, J.U., Choi, N.S., and Arakawa, K., "Interfacial Fractu Re Analysis of Human Tooth-composite Resin Resto Ration Using Acoustic Emission," Journal Korean Society for Composite Materials, Vol. 22, 2009, 5-51.
  19. Obici, A.C., Sinhoreti, M.A.C., De Goes, M.F., Consai, S., and Sobrinho, L.C., "Effect of the Photo-activation Method on Polymerization Shrinkage of Restorative Composites," Operative Dentistry, Vol. 27, 2002, pp. 192-198.
  20. Craig, R.G., Restorative Dental Materials. 10th ed., Mosby, pp. 66, 1997.
  21. O'Brien, W.J., Dental Materials and Their Selection. 3rd ed., Quintessence Publications, pp. 119, 2002.
  22. Lee, S.H., Chang, J., Ferracane, J., and Lee, I.B., "Influence of Instrument Compliance and Specimen Thickness on the Polymerization Shrinkage Stress Measurement of Lightcured Composites," Dental Materials, Vol. 23, 2007, pp. 1093-1100. https://doi.org/10.1016/j.dental.2006.10.003
  23. Seo, D.G., Min, S.H., and Lee, I.B., "Effect of Instrument Compliance on the Polymerization Shrinkage Stress Measurements of Dental Resin Composites," Journal of Korean Academy of Conservative Dentistry, Vol. 34, 2009, pp. 145-153. https://doi.org/10.5395/JKACD.2009.34.2.145
  24. Min, S.H., Ferracane, J., and Lee, I.B., "Effect of Shrinkage Strain, Modulus and Instrument Compliance on Polymerization Shrinkage Stress of Light-cured Composites During the Initial Curing Stage," Dental Materials, Vol. 26, 2010, pp. 1024-1033. https://doi.org/10.1016/j.dental.2010.07.002
  25. Ende, A.V., Munck, J.D., Mine, A., Lambrechts, P., and Meerbeek, B.V., "Does a Low-shrinking Composite Induce Less Stress at the Adhesive Interface?", Dental Materials, Vol. 26, 2010, pp. 215-222. https://doi.org/10.1016/j.dental.2009.10.003

피인용 문헌

  1. Behavior of Polymerization Shrinkage Stress of Methacrylate-based Composite and Silorane-based Composite during Dental Restoration vol.28, pp.1, 2015, https://doi.org/10.7234/composres.2015.28.1.006