• Title/Summary/Keyword: meteorological tower

Search Result 77, Processing Time 0.028 seconds

Dynamic Responses of Offshore Meteorological Tower Under Wind and Wave (바람과 파랑을 받는 해상 풍력 기상탑의 동적 응답)

  • Kwon, Soon-Duck
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.171-177
    • /
    • 2018
  • In order to investigate the cause of damage of the offshore meteorological tower, the measured wind speed data were analyzed, the dynamic displacement due to fluctuating wind load and wave load was calculated, and the fatigue was examined for vortex-induced vibration. It was confirmed from the results that the vibration lasting for four hours occurred in the meteorological tower when the maximum wind speeds for 10 minutes were compared for both the vane anemometer and ultrasonic anemometer. The effect of the gust wind on the dynamic response of the meteorological tower was greater than the wave. However, the combined forces acting on the meteorological tower was much lower than the design force even though the wind and wave loads were simultaneously applied. The vortex-induced vibration seemed to be cause of the fatigue failure in the connecting bolts. The destruction of the offshore meteorological tower was considered to be a vortex-induced vibration, not a fluctuating fluid flows.

Estimation of Dynamic Characteristics of an Offshore Meteorological Tower using Ambient Measurements (상시계측을 통한 해상기상탑의 동적특성 평가)

  • Gyehee Lee;Le Quoc Cuong;Daejin Kwag
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2023
  • In research conducted on a southwestern Korean offshore meteorological tower, acceleration datasets were gathered over half a year with time-history sensors. To enhance data credibility, a parallel measurement system was used for verification. A model of the tower was configured using beam elements, and with modifications accounting for added stiffness from auxiliary structures. Ground interactions were considered as calibrated springs based on soil layer properties. The tower's dynamic attributes and mass sensitivity were discerned using eigenvalue analysis. The structural natural frequency was consistent, with variations primarily due to new equipment adding approximately 1400 kgs. With free vibration damping assumptions, a damping ratio of roughly 1 % was derived.

Long-Term Wind Resource Mapping of Korean West-South Offshore for the 2.5 GW Offshore Wind Power Project

  • Kim, Hyun-Goo;Jang, Moon-Seok;Ko, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1305-1316
    • /
    • 2013
  • A long-term wind resource map was made to provide the key design data for the 2.5 GW Korean West-South Offshore Wind Project, and its reliability was validated. A one-way dynamic downscaling of the MERRA reanalysis meteorological data of the Yeongwang-Gochang offshore was carried out using WindSim, a Computational Fluid Dynamics based wind resource mapping software, to establish a 33-year time series wind resource map of 100 m x 100 m spatial resolution and 1-hour interval temporal resolution from 1979 to 2012. The simulated wind resource map was validated by comparison with wind measurement data from the HeMOSU offshore meteorological tower, the Wangdeungdo Island meteorological tower, and the Gochang transmission tower on the nearby coastline, and the uncertainty due to long-term variability was analyzed. The long-term variability of the wind power was investigated in inter-annual, monthly, and daily units while the short-term variability was examined as the pattern of the coefficient of variation in hourly units. The results showed that the inter-annual variability had a maximum wind index variance of 22.3% while the short-term variability, i.e., the annual standard deviation of the hourly average wind power, was $0.041{\pm}0.001$, indicating steady variability.

Three-Dimensional Computational Flow Analysis on Meteorological-Tower Shading Effect (풍황탑 차폐영향 분석을 위한 3차원 전산유동해석)

  • Rhee, Hui-Nam;Kim, Tae-Sung;Jeon, Wan-Ho;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • It is difficult to avoid measurement errors caused by the shading effect of the meteorological tower, which is used for wind resource assessment according to the IEC Standard. This paper presents a validation of the computational flow analysis results by comparing the results with the wind tunnel experiment conducted for Reynolds numbers in the $10^4$ to $10^5$ range, for the preparation of a database for use in an automatic method of correcting met-tower shading errors. A three-dimensional simulation employing the MP (Modified Production) $k-{\varepsilon}$ turbulence model predicted a wind speed deficit in the wake region according to minimum wind speed ratio, within an MAE (Mean Absolute Error) of 2.4%.

A Study on Design of Offshore Meteorological Tower (해상기상탑 설계에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon;Joo, Hyo-Joon;Kwon, O-Soon;Kwag, Dae-Jin;Jeong, Gwon-Seong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • A meteorological(met) tower is the first structure installed during the planning stages of offshore wind farm. The purpose of this paper is to design the met tower with tripod bucket type support structure and to install the sensors. The support structure consist of a central steel shaft connected to three cylindrical steel suction buckets which is more cheaper than monopile or jacket type. And the remote wind condition sensors and marine monitoring equipment, including adcp, pressure type tide gauge, wave height sensors, and scour sensors, remote power supply are installed. The manufactured met tower constructed on sea area which is in front of Gasa island. All of functions of met tower showed normal operation conditions and the wind data got by remote data collection system successfully.

Introduction of the Design Standard of Tower for Overhead Transmission Line in KEPCO (가공송전용 철탑설계기준(안) 소개 및 주요내용 해설)

  • Kim, K.H.;Woo, J.W.;Shim, E.B.;Shin, T.W.;You, C.H.;Bang, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.351-353
    • /
    • 2002
  • Up to now the design standard of tower for overhead transmission line in KEPCO was revised four times since 1970. During last year. we had reviewed this design standard. This paper shows the design standard of tower for overhead transmission line in KEPCO. In this standard, a kind of tower was defined as standard tower and special tower. Also we had defined usage range of standard tower, tower height, arrangement of power line, design condition of tower arm and etc. On the wind pressure, we had defined basic velocity pressure per region and maximum wind pressure. For special region, design wind pressure will be considered the receded wind velocity of meteorological observatory and regional condition by this standard.

  • PDF

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

A Study on Development of Small Sensor Observation System Based on IoT Using Drone (드론을 활용한 IoT기반의 소형센서 관측시스템 개발 가능성에 대한 소고)

  • Ahn, Yoseop;Moon, Jongsub;Kim, Baek-Jo;Lee, Woo-Kyun;Cha, Sungeun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1155-1167
    • /
    • 2018
  • We developed a small sensor observation system (SSOS) at a relatively low cost to observe the atmospheric boundary layer. The accuracy of the SSOS sensor was compared with that of the automatic weather system (AWS) and meteorological tower at the Korea Meteorological Administration (KMA). Comparisons between SSOS sensors and KMA sensors were carried out by dividing into ground and lower atmosphere. As a result of comparing the raw data of the SSOS sensor with the raw data of AWS and the observation tower by applying the root-mean-square-error to the error, the corresponding values were within the error tolerance range (KMA meteorological reference point: humidity ${\pm}5%$, atmospheric pressure ${\pm}0.5hPa$, temperature ${\pm}0.5^{\circ}C$. In the case of humidity, even if the altitude changed, it tends to be underestimated. In the case of temperature, when the altitude rose to 40 m above the ground, the value changed from underestimation to overestimation. However, it can be confirmed that the errors are within the KMA's permissible range after correction.

Estimation of the Random Error of Eddy Covariance Data from Two Towers during Daytime (주간에 두 타워로부터 관측된 에디 공분산 자료의 확률 오차의 추정)

  • Lim, Hee-Jeong;Lee, Young-Hee;Cho, Changbum;Kim, Kyu Rang;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.483-492
    • /
    • 2016
  • We have examined the random error of eddy covariance (EC) measurements on the basis of two-tower approach during daytime. Two EC towers were placed on the grassland with different vegetation density near Gumi-weir. We calculated the random error using three different methods. The first method (M1) is two-tower method suggested by Hollinger and Richardson (2005) where random error is based on differences between simultaneous flux measurements from two towers in very similar environmental conditions. The second one (M2) is suggested by Kessomkiat et al. (2013), which is extended procedure to estimate random error of EC data for two towers in more heterogeneous environmental conditions. They removed systematic flux difference due to the energy balance deficit and evaporative fraction difference between two sites before determining the random error of fluxes using M1 method. Here, we introduce the third method (M3) where we additionally removed systematic flux difference due to available energy difference between two sites. Compared to M1 and M2 methods, application of M3 method results in more symmetric random error distribution. The magnitude of estimated random error is smallest when using M3 method because application of M3 method results in the least systematic flux difference between two sites among three methods. An empirical formula of random error is developed as a function of flux magnitude, wind speed and measurement height for use in single tower sites near Nakdong River. This study suggests that correcting available energy difference between two sites is also required for calculating the random error of EC data from two towers at heterogeneous site where vegetation density is low.

Long Term Flux Variation Analysis on the Boseong Paddy Field (보성 농업지역에서의 장기간 플럭스 특성 분석)

  • Young-Tae Lee;Sung-Eun Hwang;Byeong-Taek Kim;Ki-Hun Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.69-81
    • /
    • 2024
  • In this paper, Annual flux variations in the Boseong Tall Tower (BTT) from 2016 to 2020 were analyzed using data from three levels (2.5 m, 60 m, and 300 m). BTT was installed in Boseong-gun, Jeollanam-do in February 2014 and continued to conduct energy exchange observations such as CO2, sensible heat, and latent heat using the eddy covariance method until March 2023. The BTT was located in a very flat and uniform paddy field, and flux observations were conducted at four levels: 2.5 m, 60 m, 140 m, and 300 m above ground. Surface energy balance was confirmed from observed data of net radiation flux, soil heat flux, sensible heat flux, and latent heat flux. Additionally, 2.5 m height surface fluxes, which are most influenced by agricultural land, were compared with data from Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration to evaluate the accuracy of LDAPS flux data. The correlation coefficient between LDAPS flux data and observed values was 0.95 or higher. Excluding summer latent heat flux data, there was a general tendency for LDAPS data to be higher than observed values. The footprint areas estimated below 60 m height mainly covered agricultural land, and flux observations at 2.5 m and 60 m heights showed typical agricultural characteristics. In contrast, the footprint estimated at 300 m height did not show agricultural characteristics, indicating that observations at this height encompassed a wide range, including mountains, sea, and roads. The analysis results of long-term flux observations can contribute to understanding the energy and carbon dioxide fluxes in agricultural fields. Furthermore, these results can be utilized as essential data for validating and improving numerical models related to such fluxes.