• Title/Summary/Keyword: metals and anions

Search Result 50, Processing Time 0.023 seconds

Effect of Groundwater Anions and pH on the Sorption Removal of Heavy Metals by Bentonite (벤토나이트의 중금속 흡착제거에 대한 pH와 지하수 음이온의 영향)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2000
  • Sorption characteristics of Pb, Cu, Cd, and Zn onto Ca- and Na-bentonites were investigated by the batch experiments in the condition of various pHs and concentrations of groundwater major anions (${So_4}^{2-}$ and ($HCO_3$), which can form a complex with heavy metals. The sorption removal of heavy metals steadily increases as pH increases. The sorption capability about heavy metals of both Ca-bentonite and Na-bentonite is in the order of Pb>Cu>Zn>Cd. The effect of pH and selectivity of heavy metals of bentonites were explained by the change of surface charge of bentonite and the speciation of heavy metals. Na-bentonite has a little higher sorption ability about heavy metals than that of Ca-bentonite. A high sorption removal of Pb in 0.1M sulfate solution may be attributed to the precipitation of $PbSo_4$(anglesite). However, sulfate has a slight effect on the sorption of CU, Cd and Zn. More than 99% of heavy metals were removed from the 0.1 M bicarbonate solution. However, the efficiency of sorption removal of heavy metals highly decreases in the bicarbonate solution of $10^{-2}$M to $10^{-4}$M. The speciation and saturation index calculated by the WATEQ4F program indicate that the sorption of anionic complexes such as ${Pb(CO_3)_2}^{2-}$, ${Cd(CO_3)_2}^{2-}$, ${Zn(CO_3)_2}^{2-}$, ${Cu(CO_3)_2}^{2-}$ and the precipitation of the solid phases such as $PbCO_3$(cerrusite), $ZnCO_3$(smithsonite), $CdCO_3$(obtavite) are involved in sorption removal of heavy metals in bicarbonate solution. The sorption capability about heavy metals of bentonites in the presence of anions shows the following order: Pb>Cu Cd>Zn.

  • PDF

Proficiency Test for Anions and Metal Ions in Aqueous Solution (수용액중 음이온 및 금속에 대한 숙련도 시험)

  • 이종해
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • This paper summerizes the results of the first proficiency testing program for achieving the analytical quality assurance of anions and metal ions in air borne particles in Korea. This program covered the chemical testing of anions(Cl-, NO3-, SO42-) and metals(Fe, Pb, Zn) in qeueous solution. The exercies was conducted by the Measurement & Analysis Committee of Korean Society for Atmospheric Environment(KOSAE). Pilot lab. was Division of Chemical Metrology and Materais Evaluation in Korea Research Institute of Standards and Science(KRISS). A total of 11 laboratories participated in the program. Two samples of 100mL in low density polyehylene bottles were supplied to participating laboratories. The proficiency testing results were interpreted by two graphical methods, Youden polt and x-Charts(control chart).

  • PDF

Exposure of Selected Chuncheon Residents to Trace Metals and Inorganic Anions in Drinking Water (춘천지역 일부 주민들의 먹는물 중 미량금속 및 무기 음이온에 대한 노출)

  • Kim, He-Kap;Song, Jin-A;Song, Byeong-Yeol
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.293-301
    • /
    • 2009
  • This study was conducted to investigate the distribution of the concentrations of selected trace metals and inorganic anions in five types of drinking water samples (mineral spring water, well water, small community water, municipal tap water, and commercial mineral water) collected from Chuncheon, Gangwon-do in 2007. Forty four samples were analyzed for five metals and five anions using an atomic absorption spectrometer and an ion chromatograph, respectively. Arsenic (As) and nitrate (${NO_3}^-$) concentrations in some groundwater samples did not meet the future (10 ${\mu}g/L$) and current (44 mg/L) Korean drinking water standards, respectively. On the other hand, any municipal tap water samples, the sources of which were lake surface water, satisfied the Korean standards. Human health risk assessment results showed that arsenic in all types of water, especially groundwater including commercial mineral water, may pose both noncarcinogenic and carcinogenic effects on the residents. It is concluded that groundwater is not safe drinking water any longer and that a national survey and follow-up measures need to be taken.

Anodizing science of valve metals

  • Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.96.1-96.1
    • /
    • 2017
  • This presentation introduces anodizing science of typical valve metals of Al, Mg and Ti, based on the ionic transport through the andic oxide films in various electrolyte compositions. Depending on the electrolyte composition, metal ions and anions can migrate through the andic oxide film without its dielectric breakdown when point defects are present within the anodic oxide films under high applied electric field. On the other hand, if anodic oxide films are broken by local joule heating due to ionic migration, metal ions and anions can migrate through the broken sites and meet together to form new anodic films, known as plasma electrolytic oxidation (PEO) treatment. In this presentation, basics of conventional anodizing and PEO methods are introduced in detail, based on the ionic migration and movement mechanism through anodic oxide films by point defects and by local dielectric breakdown of anodic oxide films.

  • PDF

Evaluation of Leaching Characteristics of Bottom Ash and Waste Tire (컬럼실험을 통한 바텀애쉬 및 폐타이어의 용출특성 평가)

  • Lee, Jea-Keun;Koh, Tae-Hoon;Sa, Kong-Myong;Lee, Sung-Jin;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.682-689
    • /
    • 2010
  • The purpose of this study was to determine any detrimental effects on surrounding environments by using bottom ash, waste tire, and mixture as a fill material to raise the ground level. Three different initial pHs (4, 6, 8) were applied to bottom ash and initial pH of 4 was used to waste tire and mixture. Among 7 heavy metals, Pb and Zn were exceeded drinking water standards but their concentrations decreased below drinking water standards within 1 PVE. Among 5 anions, sulfate exceeded 10 times of drinking water standards and further higher partition coefficients resulted in increased PVE of 8.21. For the mixture of bottom ash and waste tire, its concentrations of heavy metals and anions were decreased due to the dilution effect and lowered PVE from 8.21 (BA) to 5.89.

Removal of Se(IV) by the Fe(III)-impregnated Sea sand - Zeta potential approach to depict the binding between Fe(III) and Sea sand (표면 처리한 Sea sand를 이용한 Se(IV) 제거 - Zeta potential을 통한 Fe(III)간의 반은 메카니즘 연구)

  • 박상원;강혜정
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.205-209
    • /
    • 1999
  • Iron hydroxides are good adsorbents for uncomplexed metals, some metal-ligand complexes and many metal oxyanions. However, their adsorption properties of these precipitations are not fully exploited in wastewater treatment operations because of difficulties associated with their separation from the aqueous phase. This study describes experiments in which iron hydroxides were coated onto the surface of ordinary adsorbents(Sea sand) that are very resistant to acids, The coated adsorbents were used in adsorption of oxyanionic metals. The process was successful in removing some anions such as $SeO_3(-II)$ over a wide range of metal concentrations and sorption of oxyanionic metals increased with decreasing pH. Formation of two surface complexes for oxyanionic metals adsorption on iron hydroxides comprise (1) complexation of the free anion by a positively charged surface site, and (2) protonation of the adsorbed anion (or alternatively adsorption of a protonated form from solution) The coated adsorbents are inexpensive to prepare and could serve as the basis of a useful oxyanionic metal removal.

  • PDF

Mathematical Models of Competitive Adsorption of Inorganic Anions in Soils

  • Lee, Kyo Suk;Lee, Dong Sung;Lee, Jae Bong;Joo, Rhee Na;Lee, Myong Yun;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.666-670
    • /
    • 2015
  • Competition among anion species in solution for same sorption sites and soil surface can be of major significance in determining the effective mobility of any potentially adsorbing species. Major soil anion species include $OH^-$, $F^-$, $Cl^-$, $HCO_3{^-}$, $CO_3{^-}$, $NO_3{^-}$, $SO_4{^{2-}}$, and $PO_4{^{3-}}$. And some micro nutrients such as boron and molybdenum exist as $H_2BO_3{^-}$ and $MoO_4{^{2-}}$, as do some heavy metals such as chrome and arsenic as $CrO_4{^{2-}}$ and $HAsO_4{^{2-}}$. Pesticides such as 2,4,5-T and 2,4-D also exist as anions. Many anion species are retained by more complex mechanisms than the simple electrostatic attractions involved in most cation adsorption reactions. In binary system composed of two anions, the adsorption of one anion is influenced by the other anion due to the competition for the available and limited binding sites in soil constituents. The specifically adsorbed anions may compete more effectively for sorption sites than that of nonspecifically adsorbed anion. In this study, we aim to evaluate the mathematical models to determine the magnitude of concentration variations in adsorption due to competitive interactions between anions introduced to a system in binary mixtures.

Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea (휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • The objectives of this study are to investigate soil contamination in the vicinity of abandoned Au-Ag mine and to apply a remediation technique of liming to tailings. In the study area of the Imcheon Au-Ag mine, soils were sampled in and around the mine the analyzed by Atomic Absorption Spectrometry extracted by both 0.1N HCl and aqua regia. Elevated levels of Cd, Cu, Pb and Zn concentrations extracted by 0.1N HCl were found in soils taken from tailings site. These high contents directly influenced metal concentrations in soils taken in the vicinity of the site. This is mainly due to clastic movement by wind and effluent of mine waste water. In addition, relatively enriched concentrations of the metals were found in soils extrated by aqua regia due to strong decomposition of the samples compared with 0.1N HCl extration. According to the statistical approach, metal concentrations in soils by 0.1N HCl had a positive correlation with those by aqua regia extraction. Mine waste waters and stream waters were also sampled around the mine in spring and summer and analyzed by AAS for Cd, Cu, Pb and Zn, and by Ion Chromatography for anions. Like soils developed over tailings, significant levels of metals and sulphates were found in the mine waste waters ranging of 0.2~0.3, 0.5~2.0, 0.2~2.8, 30~50 and 1,240~4,700 mg/l of Cd, Cu, Pb, Zn and $SO_4^{2-}$, respectively. These elevated levels influenced in the stream waters in the vicinity of the tailings site. In seasonal variation of metal and anion contents, relatively high levels were found in waters sampled on summer due to leaching the metals and anions from tailings by rain. This study also examined the possibility of lime treatment for remediation of acid mine tailings and assumed to be 46 tones of pulverized lime for neutralization of the tailings.

  • PDF

Effect of Basic Oxygen Furnace Slag used as Structural Filling Materials on the Subsurface Environment (성·복토용으로 사용된 전로제강슬래그가 주변 토양환경에 미치는 영향)

  • Lee, Hosub;Nam, Taekwoo;Jho, Eun Hea;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.6-13
    • /
    • 2016
  • The effect of blast oxygen furnace (BOF) slag used as filling materials on the soil environment was studied using column tests that simulated the flow of the BOF slag leachate through the soil layer. The Cu, Mn, Zn, Ni, and F contents of the leachate affected soil were similar to that of the controls (i.e., soils that were not affected by the leachate). The As, Cd, and Pb contents were lower in the leachate affected soils than the controls. The changes in these contaminants contents can be attributed to the interactions between anions such as alkalinity generating anions (e.g., CO32−, HCO3, OH) or calcium ions with heavy metals or F, which consequently affected the fate of heavy metals and F in the leachate affected soils. The germination and growth of Spinapis alba in the soils affected by the leachate and the controls were also similar. However, the proportion of alkalophilic bacteria in the soils affected by the leachate significantly increased, and this can be explained by the increased soil pH due to the alkaline leachate. Overall, this study shows that the alkalinity of the BOF slag leachate, rather than the presence of heavy metals and F in the leachate, needs to be considered when the BOF slag is to be reused as structural filling materials.

The Absorption and Purification of Air Pollutants and Heavy Metals by Selected Trees in Kwangju (광주지역(光州地域)에서 주요(主要) 수목(樹木)의 대기오염물질(大氣汚染物質)과 중금속(重金屬) 흡수(吸收) 정화기능(淨化機能)에 관(關)한 연구(硏究))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.510-522
    • /
    • 1999
  • The air pollutants ; $SO_2$, $SO{_4}^{-2}$, $NO{_3}^-$, $Cl^-$ are absorbed into soils through falling with dusts and rain from the atmosphere. The sources of heavy metal contaminants in the environments are agricultural and horticultural materials, sewage sludges, fossil fuel combustion, metallurgical industries, electronics and waste disposal etc.. The soils and hydrosphere can be polluted on the way of the circulation of these heavy metals. Studied pollutant anions are $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ and heavy metals are Se, Mo, Zn, Cd, Pb, Mn, Cr, Co, V, As, Cu and Ni which are the elements to be concerned with the essentials for plants, with animal and human health. This study is with the aim of selecting the species of roadside trees and green space trees which have excellent absorption of air pollutants and heavy metals from the atmosphere and the soils in the urban area. Two areas are designated to carry out this study : urban area ; Kwangju city and rural area ; the yard of Forest Environment Institute of Chollanam-do, at Sanje-ri, Sampo-myum, Naju city, Chollanam-do (23km away from Kwangju). This study is carried out to understand the movement of anions and heavy metals from the soils to the trees in both areas, the absorption of anions and heavy metals from atmosphere into leaves and the amounts of anions and heavy metals in leaves and fine roots(< 1mm dia.) of roadside trees and green space trees in Kwangju and trees in the yard of Forest Environment Institute of Chollanam-do. The tree species selected for this study in both areas are Ginkgo biloba, Quercus acutissima, Cedrus deodara, Platanus occidentalis, Robinia pseudoacacia, Alnus japonica. Metasequoia glyptostroboides. Zekova serrata. Prunus serrulata var. spontanea, and Pinus densiflora. The results of the study are as follows : 1. $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ concentrations are higher in the soils of the urban area than in those of the rural area, and $NO{_3}^-$ and $SO{_4}^{-2}$ are higher in the leaves than in the roots due to the absorption of the these pollutants through the stomata. 2. Ginkgo biloba, Robinia pseudoacacia. Zekova serrata, Quercus acutissima, and Platanus occidentalis can be adequated to the roadside trees and the environmental trees due to their good absorption of $NO{_3}^-$ and $SO{_4}^{-2}$. 3. Heavy metals in the soils of both areas are in the order of Mn > Zn > V > Cr > Pb > Ni > Cu > Mo> Cd, and in the leaves and roots of the trees in the both areas are in the order of Mn>Zn>Cr>Cu>V>Ni. Both orders are similar ones except V. There are more in the urban soils than in the rural soils in amount of Mn, Zn, Pb, V, Cu. 4. It is supposed that there is no antagonism between Mn and Zn in this study. 5. Se, Co and As are not detected in the soils, the leaves and the roots in both areas. Sn, Mo, Cd and Pb are also not detected in the leaves and roots in spite of considerable amount in the soils of both areas.

  • PDF