• 제목/요약/키워드: metallurgical technology

검색결과 691건 처리시간 0.025초

포토마스크가 필요 없는 스크린 제판 기술 개발(II) (A Development on the Non-Photomask Plate Making Technology for Screen Printing (II))

  • 박경진;강효진;김성빈;남수용;안병현
    • 한국인쇄학회지
    • /
    • 제26권2호
    • /
    • pp.45-54
    • /
    • 2008
  • We have manufactured a photoresist which has excellent dispersity and good applying property due to 330 cps of viscosity for environment-friendly and economical maskless screen plate making. And the photoresist applied on the screen stretched was exposed with mask by UV-LED light source so we could manufacture the photoresist which proper for the UV light source. And it was developed by air spray with $1.7\;kgf/cm^2$ of injection pressure. Because of the excellence of power and resolution of the UV-LED light sourse, the pencil hardness and solvent resistance of curing photoresist film were excellent as those of conventional photoresist film. Moreover the $100{\mu}m$-width stripe image which has sharp edges was formed. So we confirmed a possibility of dry development process by air spray method.

  • PDF

복합재료 보에 삽입된 Ni-Ti 형상기억합금 선의 센서로의 응용을 위한 연구 (A Study on the Application of Ni-Ti Shape Memory Alloy Wire Embedded in Composite Beam as a Sensor.)

  • 이창호;이정주;허증수
    • 센서학회지
    • /
    • 제7권4호
    • /
    • pp.285-292
    • /
    • 1998
  • 형상기억합금은 액츄에이터로서의 우수한 특성으로 인해 공학의 많은 분야에서 사용되고 있다. 그 중의 한 예로서 복합재료 구조물에 삽입되어 지능형 복합재료 구조물의 작동소재로서 유용하게 사용될 수 있다. 형상기억합금 선의 전기저항은 변형률에 대하여 큰 영향을 받는데, 이를 이용하여 형상기억합금 선을 이들 물리량에 대한 센서로 활용할 수 있을 것이다. 따라서 본 연구에서는 복합재료 보에 삽입된 형상기억합금 액츄에이터의 센서로서의 활용 가능성을 연구 조사하여 이를 변위센서로 활용할 수 있음을 밝혔다.

  • PDF

Epitaxy of Si and Si1-xGex(001) by ultrahigh vacuum ion-beam sputter deposition

  • Lee, N. E.;Greene, J. E.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권2호
    • /
    • pp.107-117
    • /
    • 1998
  • Epitaxial undoped and Sb-doped si films have been grown on Si(001) substrates at temperatures T between 80 and 750$^{\circ}C$ using energetic Si in ultra-high-vacuum Kr+-ion-beam sputter deposition(IBSD). Critical epitaxial thicknesses te, The average thickness of epitaxial layers, in undoped films were found to range from 8nm at Ts=80$^{\circ}C$ to > 1.2 ${\mu}$m at Ts=300$^{\circ}C$ while Sb incorporation probabilities $\sigma$sb varied from unity at Ts 550$^{\circ}C$ to 0.1 at 750$^{\circ}C$. These te and $\sigma$Sb values are approximately one and one-to-three orders of magnitude, respectively, higher than reported results achieved with molecular-beam epitaxy. Plan-view and cross-sectional transmission electron microscopy, high-resolution x-ray diffraction, channeling and axial angular-yield profiles by Rutherford back scattering spectroscopy for epitaxial Si1-x Gex(001) alloy films (0.15$\leq$x$\leq$0.30) demonstrated that the films are of extremely high crystalline quality. critical layer thicknesses hc the film thickness where strain relaxation starts, I these alloys wre found to increase rapidly with decreasing growth temperature. For Si0.70 Ge0.30, hc ranged from 35nm at Ts=550$^{\circ}C$ to 650nm at 350$^{\circ}C$ compared to an equilibrium value of 8nm.

  • PDF

Rapid Thermal Annealing at the Temperature of 650℃ Ag Films on SiO2 Deposited STS Substrates

  • Kim, Moojin;Kim, Kyoung-Bo
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.208-213
    • /
    • 2017
  • Flexible opto-electronic devices are developed on the insulating layer deposited stainless steel (STS) substrates. The silicon dioxide ($SiO_2$) material as the diffusion barrier of Fe and Cr atoms in addition to the electrical insulation between the electronic device and STS is processed using the plasma enhanced chemical vapor deposition method. Noble silver (Ag) films of approximately 100 nm thickness have been formed on $SiO_2$ deposited STS substrates by E-beam evaporation technique. The films then were annealed at $650^{\circ}C$ for 20 min using the rapid thermal annealing (RTA) technique. It was investigated the variation of the surface morphology due to the interaction between Ag films and $SiO_2$ layers after the RTA treatment. The results showed the movement of Si atoms in silver film from $SiO_2$. In addition, the structural investigation of Ag annealed at $650^{\circ}C$ indicated that the Ag film has the material property of p-type semiconductor and the bandgap of approximately 1 eV. Also, the films annealed at $650^{\circ}C$ showed reflection with sinusoidal oscillations due to optical interference of multiple reflections originated from films and substrate surfaces. Such changes can be attributed to both formation of $SiO_2$ on Ag film surface and agglomeration of silver film between particles due to annealing.

DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구 (Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process)

  • 이은미;신광용;이기용;윤희석;심도식
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

HF-last Cleaning에서 SC-1 step과 $UV/O_3$ step이 gate 산화막에 미치는 영향 (Effects of $UV/O_3$ and SC-1 Step in the HF Last Silicon Wafer Cleaning on the Properties of Gate Oxide)

  • 최형복;류근걸;정상돈;전형탁
    • 한국재료학회지
    • /
    • 제6권4호
    • /
    • pp.395-400
    • /
    • 1996
  • 반도체 소자가 점점 고집적회되고 고성능화되면서 Si 기판 세정 방법은 그 중요성이 더욱 더 커지고 있다. 특히 ULSI급 소자에서는 세정 방법이 소자 생산수율 및 신뢰성에 큰 영향을 끼치고 있다. 본 연구에서는 HF-last 세정에 UV/O3과 SC-1 세정을 삽입하여 그 영향을 관찰하였다. 세정 방법은 HF-last 세정을 기본으로 split 1(piranha+HF), split 2(piranha+UV/O3+HF), split 3(piraha+SC-1+HF), split 4(piranha+(UV/O3+HF) x3회 반복)의 4가지 세정 방법으로 나누어 실험하였다. 세정을 마친 Si 기판은 Total X-Ray Fluorescence Spectroscopy(AFM)을 사용하여 표면거칠기를 측정하였다. 또한 세정류량을 측정하고, Atomic Force Microscopy(AFM)을 사용하여 표면거칠기를 측정하였다. 또한 세정후 250$\AA$의 gate 산화막을 성장시켜 전기적 특성을 측정하였다. UV/O3을 삽입한 split 2와 split 4세정방법이 물리적, 전기적 특성에서 우수한 특성을 나타냈고, SC-1을 삽입한 split 3세정 방법이 표준세정인 split 1세정 방법보다 우수하지 못한 결과를 나타냈다.

  • PDF

복합조직형 고강도 용융아연 도금강판의 도금특성에 미치는 강중 Si의 영향 (Effects of Silicon on Galvanizing Coating Characteristics in Dual Phase High Strength Steel)

  • 전선호;진광근;신광수;이준호;손호상
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.423-432
    • /
    • 2009
  • In the galvanizing coating process, the effects of the silicon content on the coatability and wettability of molten zinc were investigated on Dual-Phase High Strength Steels (DP-HSS) with various Si contents using the galvanizing simulator and dynamic reactive wetting systems. DP-HSS showed good coatability and a well-developed inhibition layer in the range of Si content below 0.5 wt%. Good coatability was the results of the mixed oxide $Mn_{2}SiO_{4}$, being formed by the selective oxidation on the surface, with a low contact angle in molten zinc and a large fraction of oxide free surface that provided a sufficient site for the molten zinc to wet and react with the substrate. On the other hand, with more than 0.5 wt%, DP-HSS exhibited poor coatability and an irregularly developed inhibition layer. The poor coatability was due to the poor wettability that resulted from the development of network-type layers of amorphous ${SiO}_{2}$, leading to a high contact angle in molten zinc, on the surface.

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • 제2권2호
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

그리스 윤활하에서 레이저 표면 텍스쳐링된 그루브 빗살무늬 패턴의 사잇각에 따른 미끄럼 마찰특성 평가 (Dependence of Sliding Friction Properties on the Angle of Laser Surface Texturing for a Grooved Crosshatch Pattern Under Grease Lubrication)

  • 공민선;채영훈
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.261-266
    • /
    • 2022
  • Notably, laser surface patterning facilitates tribological applications under lubricated sliding contacts. Consequently, a special pattern that can reduce the coefficient of friction under contact is considered necessary for improved machine efficiency. However, inappropriate pattern designs produce higher friction coefficients and cannot reduce friction. In this study, we use cast iron pins as specimens to investigate their friction and wear characteristics. Moreover, we experimentally investigate the correlation between the friction reduction effect and the design of groove crosshatch patterns fabricated with various angles and widths. We conduct a friction test using a pin-on-disc type tribometer under grease lubrication to study the friction reduction effect of the specimens, and we observe that the average coefficient of friction changes with the crosshatch angle and width. The experiment reveals that grooved crosshatch specimens with a crosshatch angle of 135°maximize friction reduction. The coefficient of friction of the groove specimens with a width of 120 ㎛ is lower than that of the specimens with a width of 200?. The friction reduction effect of the width of the groove is attributed to the density of the groove pattern. Thus, grooved crosshatch patterns can be designed to maximize friction reduction, and the friction property of a grooved crosshatch pattern is found to be related to its width and angle.

XGB 및 LGBM을 활용한 Ti-6Al-4V 적층재의 변형 거동 예측 (Predicting Deformation Behavior of Additively Manufactured Ti-6Al-4V Based on XGB and LGBM)

  • 천세호;유진영;김정기;오정석;남태현;이태경
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.173-178
    • /
    • 2022
  • The present study employed two different machine-learning approaches, the extreme gradient boosting (XGB) and light gradient boosting machine (LGBM), to predict a compressive deformation behavior of additively manufactured Ti-6Al-4V. Such approaches have rarely been verified in the field of metallurgy in contrast to artificial neural network and its variants. XGB and LGBM provided a good prediction for elongation to failure under an extrapolated condition of processing parameters. The predicting accuracy of these methods was better than that of response surface method. Furthermore, XGB and LGBM with optimum hyperparameters well predicted a deformation behavior of Ti-6Al-4V additively manufactured under the extrapolated condition. Although the predicting capability of two methods was comparable, LGBM was superior to XGB in light of six-fold higher rate of machine learning. It is also noted this work has verified the LGBM approach in solving the metallurgical problem for the first time.