• 제목/요약/키워드: metallo-β-lactamase

검색결과 12건 처리시간 0.182초

Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods

  • Lee, Young-Duck;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.263-269
    • /
    • 2016
  • Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

Prevalence and Diversity of MBL Gene-Containing Integrons in Metallo-β-Lactamase (MBL)-Producing Pseudomonas spp. Isolates Disseminated in a Korean Hospital

  • Yum, Jong Hwa
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.321-330
    • /
    • 2019
  • Carbapenem is recently considered as the last resort of the therapeutics for gram negative bacterial infection. Increasing of organisms producing metallo-β-lactamase (MBL), we have difficulty in choosing the antimicrobial agents. Among 345 clinical isolates of Pseudomonas spp., 61 isolates (17.7%) were positive for the modified imipenem or meropenem-Hodge test and 55 isolates (15.9%) were positive for the imipenem-EDTA + SMA double disk synergy test (DDS). PCR and sequencing of blaVIM-2-allele and blaIMP-1-allele showed that 17 isolates of Pseudomonas aeruginosa, 9 isolates of Pseudomonas taiwnensis and 2 Pseudomonas plecoglossicida had blaVIM-2, and 22 isolates of P. aeruginosa and one Pseudomonas otitidis had blaIMP-6. These MBL genes were all in class 1 integron. The size of class 1 integron with blaVIM-2 ranged from 3.5 kb to 5.5 kb in clinical isolates of Pseudomonas spp. including P. aeruginosa. blaVIM-2 was most often located first in the class 1 integron, sometimes in the second or third position, and these integrons often had aacA4 or aadA1. Strict infection control measures are needed to more effectively prevent further spread of these MBL-producing Pseudomonas spp. In addition, MBL-producing Pseudomonas spp. is expected to continue to spread in various countries and regions.

Antibacterial activity of Chamaecyparis obtuse extract and Profile of Antimicrobial Agents Resistance for Metallo-β-lactamase-Producing Pseudomonas aeruginosa

  • Jonghwa Yum
    • 대한의생명과학회지
    • /
    • 제30권2호
    • /
    • pp.96-99
    • /
    • 2024
  • In vitro antimicrobial activities of hot water extracts of Chamaecyparis obtuse, for clinical metallo-β-lactamase-Producing Pseudomonas aeruginosa (MBLPA.) was compared to commonly used conventional antimicrobial agents. All MBLPA was susceptible to colistin or amikacin, but also to imipenem 88.6%, meropenem 100%, piperacillin 85.7%, ceftazidime 97.1%, gentamicin 97.1%, and ciprofloxacin 100% were non-susceptible. MIC range to imipenem, meropenem, cefotaxime, ceftazidime, gentamicin, and ciprofloxacin for MBLPA were each 1 - >128 ㎍/mL, 4 - >128 ㎍/mL, 4 - >128 ㎍/mL, 8 - >128 ㎍/mL, 4 - >128, and 2- >128 ㎍/mL. MIC range to aztreonam for MBLPA were 1 - 128 ㎍/mL. MIC90 to imipenem, meropenem, cefotaxime, ceftazidime, gentamicin, and ciprofloxacin for MBLPA were each 32 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, and 128 ㎍/mL. MIC90 to colistin and amikacin were each 1 ㎍/mL and 64 ㎍/mL. The hot water extracts of C. obtuse leaf had the lowest MIC range (0.25 - >0.5 μL/mL), MIC50 (>0.5 μL/mL), and MIC90 (>0.5 μL/mL) of the clinical MBLPA tested, and it was possible more potent than various conventional antimicrobial agents for MBLPA infection patients. Therefore, it suggested the possibility of using extract components of C. obtuse or their derivatives to treat MBLPA infection patients.

국내 대학병원에서 분리된 Metallo-β-Lactamase (MBL) 생성 Acinetobacter spp. 분리주의 높은 출현율과 유전형 특징 (High Prevalence and Genotypic Characterization of Metallo-β-Lactamase (MBL)-Producing Acinetobacter spp. Isolates Disseminated in a Korean Hospital)

  • 염종화
    • 대한임상검사과학회지
    • /
    • 제51권4호
    • /
    • pp.444-452
    • /
    • 2019
  • 주요 획득성 metallo-β-lactamase (MBL) 유전자에 의해 매개되는 carbapenem 내성, 특히 Acinetobacter spp. 균종의 임상 분리주에 대한 보고가 증가하고 있다. 본 연구에서 임상에서 비 중복으로 분리된 carbapenem 비감수성 Acinetobacter spp. 191주 중 125 (65.4%)주가 imipenem 혹은 meropenem-Hodge 변법시험에 양성이었고, 49 (25.7%)주가 imipenem-EDTA+SMA double disk synergy (DDS) 시험에 양성이었다. blaVIM-2 allele와 blaIMP-2 allele 검출을 위한 중합효소연쇄반응과 염기서열분석을 시행한 결과, A. baumannii와 A. calcoaceticus에서 각각 29주와 1주가 blaVIM-2를 갖고 있었고, A. baumannii 16주와 A. calcoaceticus 2주가 blaIMP-1을 갖고 있었다. A. genomospecies 3는 blaVIM-2와 blaAIM-1을 동시에 갖고 있었다. 이들 MBL 유전자는 모두 class 1 integron에 있었다. blaVIM-2 혹은 blaIMP-6를 갖는 class 1 integron의 크기는 A. baumannii 분리주에서는 2.8 kb에서 3.2 kb이었고, A. genomospecies 3 분리주에서는 3.2 kb에서 3.5 kb이었다. blaVIM-2는 대부분 class 1 integron에 첫번째 혹은 두번째에 위치하였고, aacA4를 흔히 가지고 있었다. 다양한 내성 유전자를 가질 수 있는 MBL 생성 Acinetobacter spp.뿐 아니라 다양한 내성 유전자를 가질 수 있는 integron의 전파로 imipenem이나 meropenem과 같은 carbapenem 내성을 포함하여 다제 내성 그람음성 세균의 증가가 예상된다. 또한, 위중한 Acinetobacter spp. 감염증 치료를 위한 새로운 항균제 개발이 필요하다.

Genetic Diversity of Metallo-β-lactamase Genes of Chryseobacterium indologenes Isolates from Korea

  • Yum, Jong Hwa
    • 대한의생명과학회지
    • /
    • 제25권3호
    • /
    • pp.275-281
    • /
    • 2019
  • This study was performed to characterize the chromosomal metallo-${\beta}$-lactamases (MBLs) of Chryseobacterium indologenes isolated from Korea and to propose a clustering method of IND MBLs based on their amino acid similarities. Chromosomal MBL genes were amplified by PCR from 31 clinical isolates of E. indologenes. Nucleotide sequencing was performed by the dideoxy chain termination method using these PCR products. Antimicrobial susceptibilities were determined by the agar dilution method. PCR experiments showed that all 31 E. indologenes isolates contained all $bla_{IND}$ genes. DNA sequence analysis revealed that E. indologenes isolates possessed ten types of $bla_{IND}$ gene, including seven novel variants ($bla_{IND-8}$ to $bla_{IND-14}$). The most common combination of MBL was IND-2 (n = 18). Minimum inhibitory concentrations of imipenem and meropenem for the isolates harboring novel IND MBLs were ${\geq}16{\mu}g/mL$. IND MBLs were grouped in three clusters, based on amino acid similarities.

임상에서 분리된 Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 분자역학 (Molecular Epidemiology of Metallo-β-lactamase Producing Pseudomonas aeruginosa Clinical Isolates)

  • 최명원
    • 생명과학회지
    • /
    • 제22권9호
    • /
    • pp.1268-1276
    • /
    • 2012
  • 사람의 감염증 치료에 사용되는 carbapenem계 약제에 대한 내성균의 출현 및 확산은 감염증 치료를 제한할 뿐만 아니라 집단 발병의 원인이 될 수 있다. 이에 본 연구에서는 ${\beta}$-lactam 약제에 내성을 갖는 Pseudomonas aeruginosa (P. aeruginosa)를 대상으로 metallo-beta-lactamase (MBL)의 유전형을 규명함으로써 내성세균의 감염증 치료지침 및 확산방지책 마련에 기초 자료를 제공하고자 하였다. 본 연구의 대상이 된 254개의 임상 검체 중에서 42주의 P. aeruginosa 를 분리하여 imipenem 혹은 meropenem에 내성을 나타내는 Hodge 변법과 EDST에서 각각 28주와 23주가 양성반응을 보였다. DNA의 염기서열 분석결과 $bla_{IMP-6}$ 유전자 보유균이 8주, $bla_{VIM-2}$ 유전자 보유균이 17주로 59.5%(25/42)가 MBL을 생성하는 것으로 나타났다. $bla_{IMP-6}$의 유전자 환경은 $bla_{IMP-6}$-qac-aacA4-$bla_{OXA-1}$-aadA1 유전자 배열을 지니고 있었다. 또한 ERIC PCR 결과 IMP-6과 VIM-2를 생성하는 일부 균주에서 역학적 연관성이 있음이 확인되었다. 본 연구에서 분리한 carbapenem계 항균제 내성 P. aeruginosa가 보유한 $bla_{IMP-6}$ 유전자는 대구지역에서 발병이 보고된 유전자의 gene cassette와 일치하는 것으로 확인되었다. 따라서 이들 세균이 지역사회에 정착하고 있고 이들을 보유한 세균에 의한 감염증 치료시 치료약제에 대한 선택압을 증가시킬 것으로 우려된다. 그러므로 항균제 내성 검사를 통하여 적절한 항균제를 선택하고, 항균제 내성균들의 출현과 확산을 막는 연구가 계속되어야 할 것으로 생각된다.

Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea

  • Cho, Hye Hyun;Kwon, Gye Cheol;Kim, Semi;Koo, Sun Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1154-1162
    • /
    • 2015
  • The emergence of carbapenem resistance among Pseudomonas aeruginosa is an increasing problem in many parts of the world. In particular, metallo-$\beta$-lactamases (MBLs) and AmpC $\beta$lactamases are responsible for high-level resistance to carbapenem and cephalosporin. We studied the diversity and frequency of $\beta$-lactamases and characterized chromosomal AmpC $\beta$lactamase from carbapenem-resistant P. aeruginosa isolates. Sixty-one carbapenem-resistant P. aeruginosa isolates were collected from patients in a tertiary hospital in Daejeon, Korea, from January 2011 to June 2014. Minimum inhibitory concentrations (MICs) of four antimicrobial agents were determined using the agar-dilution method. Polymerase chain reaction and sequencing were used to identify the various $\beta$-lactamase genes, class 1 integrons, and chromosomally encoded and plasmid-mediated ampC genes. In addition, the epidemiological relationship was investigated by multilocus sequence typing. Among 61 carbapenem-resistant P. aeruginosa isolates, 25 isolates (41.0%) were MBL producers. Additionally, 30 isolates producing PDC (Pseudomonas-derived cephalosporinase)-2 were highly resistant to ceftazidime (MIC50 = $256{\mu}g/ml$) and cefepime (MIC50 = $256{\mu}g/ml$). Of all the PDC variants, 25 isolates harboring MBL genes showed high levels of cephalosporin and carbapenem resistance, whereas 36 isolates that did not harbor MBL genes revealed relatively low-level resistance (ceftazidime, p < 0.001; cefepime, p < 0.001; imipenem, p = 0.003; meropenem, p < 0.001). The coexistence of MBLs and AmpC $\beta$-lactamases suggests that these may be important contributing factors for cephalosporin and carbapenem resistance. Therefore, efficient detection and intervention to control drug resistance are necessary to prevent the emergence of P. aeruginosa possessing this combination of $\beta$-lactamases.

Virtual Screening of Penicillin-derived Inhibitors for the Metallo-β-lactamase from Bacillus cereus

  • Lee, Jong-Sun;White, Ethan;Kim, Sang-Gon;Kim, Sung-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3644-3652
    • /
    • 2010
  • The metallo-$\beta$-lactamases ($M{\beta}Ls$) are clinically significant enzymes which readily hydrolyze most $\beta$-lactam antibiotics. Discovering potential inhibitors for the $M{\beta}Ls$ is an expensive, time consuming endeavor. Virtual screening can sieve out inhibitor candidates with incompatible features prior to synthesis, decreasing these costs. Using Autodock 4.0, the binding locations and energies of four previously-studied potential inhibitors and four additional compounds obtained from the National Cancer Institute (NCI) database were computationally calculated. Based on the docking models of these eight compounds, we then designed several hypothetical inhibitor structures, compounds A through F, and performed their respective docking experiments. The docking results for compound F showed that it binds to the zinc containing active sites with a lowest predicted binding energy of -6.70 kcal/mol, suggesting F is the most likely potential $M{\beta}L$ inhibitor.

Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 시험관내 항균제 병합요법에 대한 연구 (In vitro Antimicrobial Combination Therapy in Metallo-β-lactamase Producing Pseudomonas aeruginosa)

  • 홍승복
    • 대한임상검사과학회지
    • /
    • 제38권3호
    • /
    • pp.166-172
    • /
    • 2006
  • Metallo-${\beta}$-lactamase (MBL) can hydrolyze all ${\beta}$-lactams except monobactams and frequently coexists with various antibiotic resistance genes such as aminoglycoside resistance, sulfonamide resistance gene, etc. Therefore, the effective antibiotics against infections by these bacteria are markedly limited or can't even be found. We tried to search in-vitro antimicrobial combinations with synergistic effects for a VIM-2 type MBL producing Pseudomonas aeruginosa, isolated from clinical specimen. On the selection of antibiotic combinations with synergistic effects, we performed a one disk synergy test, modified Pestel's method, in agar without aztreonam (AZT). The bacteriostatic synergistic effects of this tests were scored as $S_1$ (by susceptibility pattern in agar without antibiotics), $S_2$ (by the change of susceptibility in agar with or without antibiotics) and $S_3$ ($S_1$ + $S_2$) and was classified into weak (1 point), moderate (2 points) and strong (3 points) by $S_3$ score. Subsequently, we carried out the time-killing curve for the antibiotic combinations with the strong synergistic bacteriostatic effect. One VIM-2 type MBL producing P. aeruginosa confirmed by the PCR showed all resistance against all ${\beta}$-lactams except AZT, aminoglycoside and ciprofloxacin. In the one disk synergy test, this isolate showed a strong bacteriostatic synergistic effect for the antibiotic combination of AZT and piperacillin-tazobactam (PIP-TZP) or AZT and amikacin (AN). On the time-killing curve after six hours of incubation, the colony forming units (CFUs/mL) of this bacteria in the medium broth with both combination antibiotics were decreased to 1/18.7, 1/17.1 of the least CFUs of each single antibiotics. The triple antibiotic combination therapy including AZT, PIP-TZP and AN was shown to be significantly synergistic after 8 hrs of exposure. In a VIM-2 MBL producing P. aeruginosa with susceptibility for AZT, the triple antibiotic combination therapy including AZT, PIP-TZP and AN may be considered as an alternative antibiotics modality against the infection by some MBL type. But the antimicrobial combination therapy for many more MBL producing isolates is essential to know as soon as possible for the selection of effective treatment against the infection by this bacteria.

  • PDF

Phenotypic and Genotypic Detection of Metallo-β-Lactamase Producing Pseudomonas aeruginosa

  • Yang, Byoung-Seon;Hong, Keun-Seok;Jung, Seung-Bong;Kwon, Young-Hoon;Jeong, Jong-Yoon;Lee, Min-Joo;Lee, Hye-In;Park, Mi-Seon;Choi, Seung-Gu
    • 대한임상검사과학회지
    • /
    • 제44권2호
    • /
    • pp.81-85
    • /
    • 2012
  • This study was undertaken to evaluate phenotypic and genotypic methods for detection of Metallo-Beta-Lactamases (MBLs) among nosocomial Pseudomonas aeruginosa. Of the 50 P. aeruginosa isolates from clinical specimens, 20 were evaluated for carbapenem resistance and screened for MBL by double-disk synergy test and combined-disk test. Nineteen strains (95%) were found to be MBL producers among the 20 P. aeruginosa. MBL positives were further confirmed by Polymerase Chain Reaction (PCR). For the IMP and VIM types of MBLs, PCR analysis was performed on 19 of the 20, and 10 were positive for VIM MBL type. This study reports the validation of a simple and accurate MBL detection method that can be easily incorporated into the daily routine of a clinical laboratory. Early detection of MBL-carrying organisms, including those with susceptibility to carbapenems, is of paramount clinical importance, as it allows rapid initiation of strict infection control practices as well as therapeutic guidance for confirmed infection.Key Words : Hepatitis A virus (HAV), Anti-HAV, Hospital workers, Prevalence, Vaccination

  • PDF