DOI QR코드

DOI QR Code

Prevalence and Diversity of MBL Gene-Containing Integrons in Metallo-β-Lactamase (MBL)-Producing Pseudomonas spp. Isolates Disseminated in a Korean Hospital

  • Yum, Jong Hwa (Department of Clinical Laboratory Science, Dongeui University)
  • Received : 2019.08.26
  • Accepted : 2019.10.14
  • Published : 2019.12.31

Abstract

Carbapenem is recently considered as the last resort of the therapeutics for gram negative bacterial infection. Increasing of organisms producing metallo-β-lactamase (MBL), we have difficulty in choosing the antimicrobial agents. Among 345 clinical isolates of Pseudomonas spp., 61 isolates (17.7%) were positive for the modified imipenem or meropenem-Hodge test and 55 isolates (15.9%) were positive for the imipenem-EDTA + SMA double disk synergy test (DDS). PCR and sequencing of blaVIM-2-allele and blaIMP-1-allele showed that 17 isolates of Pseudomonas aeruginosa, 9 isolates of Pseudomonas taiwnensis and 2 Pseudomonas plecoglossicida had blaVIM-2, and 22 isolates of P. aeruginosa and one Pseudomonas otitidis had blaIMP-6. These MBL genes were all in class 1 integron. The size of class 1 integron with blaVIM-2 ranged from 3.5 kb to 5.5 kb in clinical isolates of Pseudomonas spp. including P. aeruginosa. blaVIM-2 was most often located first in the class 1 integron, sometimes in the second or third position, and these integrons often had aacA4 or aadA1. Strict infection control measures are needed to more effectively prevent further spread of these MBL-producing Pseudomonas spp. In addition, MBL-producing Pseudomonas spp. is expected to continue to spread in various countries and regions.

Keywords

References

  1. Andrade SS, Jones RN, Gales AC, Sader HS. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997-2001). J Antimicrob Chemother. 2003. 52: 140-141. https://doi.org/10.1093/jac/dkg270
  2. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, Goto M, Convenient test for screening metallo-${\beta}$-lactamase-producing Gram-negative bacteria by using thiol compounds. J Clin Microbiol. 2000. 38: 40-43. https://doi.org/10.1128/JCM.38.1.40-43.2000
  3. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility tests; approved standards M2-A8, 27th ed. Wayne PA: CLSI; 2017.
  4. Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd ERM. Antimicrobial resistance pattern and molecular genetic distribution of metallo-${\beta}$-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infect Drug Resist. 2019. 12: 2125-2133. https://doi.org/10.2147/IDR.S198373
  5. Fiett J, Baraniak A, Mrowka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, Samet A, Hryniewicz W, Gniadkowski M. Molecular epidemiology of acquired-metallo-beta-lactamaseproducing bacteria in Poland. Antimicrob Agents Chemother. 2006. 50: 880-886. https://doi.org/10.1128/AAC.50.3.880-886.2006
  6. Giakkoupi P, Petrikkos G, Tzouvelekis LS, Tsonas S, Legakis NJ, Vatopoulos AC. Spread of integron-associated VIM-type metallo-beta-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J Clin Microbiol. 2003. 41: 822-825. https://doi.org/10.1128/JCM.41.2.822-825.2003
  7. Hong JS, Kim JO, Lee H, Bae IK, Jeong SH, Lee K. Characteristics of Metallo-${\beta}$-Lactamase-producing Pseudomonas aeruginosa in Korea. Infect Chemother. 2015. 47: 33-40. https://doi.org/10.3947/ic.2015.47.1.33
  8. Hong S-B. In vitro Antimicrobial Combination Therapy in Metallo-${\beta}$-lactamase Producing Pseudomonas aeruginosa. Korean Journal of Clinical Laboratory Science. 2006. 38: 166-172.
  9. Jones RN, Kirby JT, Beach ML, Biedenbach DJ, Pfaller MA. Geographic variations in activity of broad-spectrum ${\beta}$-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY Antimcrobial Surveillance Program (1997-2000). Diagn Microbiol Infect Dis. 2002. 43: 239-243. https://doi.org/10.1016/S0732-8893(02)00390-5
  10. Kim I-S, Lee NY, Ki C-S, Oh WS, Peck KR, Song J-H. Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and molecular typing of metallo-beta-lactamase producers in a Korean Hospital. Microb Drug Resistance. 2005. 11: 3355-3558.
  11. Kim IS, Oh WI, Song JH, Lee NY. Screening and Identification of Metallo-${\beta}$-Lactamase Gene in Clinical Isolates of Imipenem-Resistant Pseudomonas aeruginosa. Korean J Lab Med. 2004. 24: 177-182.
  12. Kimura S, Alba J, Shiroto K, Sano R, Niki Y, Maesaki S, Akizawa K, Kaku M, Watanuki Y, Ishii Y, Yamaguchi K. Clonal diversity of metallo-beta-lactamase-possessing Pseudomonas aeruginosa in geographically diverse regions of Japan. J Clin Microbiol. 2005. 43: 458-461. https://doi.org/10.1128/JCM.43.1.458-461.2005
  13. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999. 43: 1584-1590. https://doi.org/10.1128/AAC.43.7.1584
  14. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge test and EDTA-disk synergy tests to screen metallo-${\beta}$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001. 7: 88-91. https://doi.org/10.1046/j.1469-0691.2001.00204.x
  15. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y. Korean Nationwide Surveillance of Antimicrobial Resistance Group. VIM- and IMP-type metallo-beta-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003a. 9: 868-871. https://doi.org/10.3201/eid0907.020753
  16. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, Livermore DM. blaVIM-2 cassette-containing novel integrons in metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in ad Korean hospital. Antimicrob Agents Chemother. 2002. 46: 1053-1058. https://doi.org/10.1128/AAC.46.4.1053-1058.2002
  17. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge Test and the imipenem-EDTA double disk synergy test for differentiating metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003b. 41: 4623-4629. https://doi.org/10.1128/JCM.41.10.4623-4629.2003
  18. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM, Chong Y. Novel acquired metallo-${\beta}$-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005. 49: 4485-4491. https://doi.org/10.1128/AAC.49.11.4485-4491.2005
  19. Levesque C, Piche L, Chantal L, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995. 39: 185-191. https://doi.org/10.1128/AAC.39.1.185
  20. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009. 22: 582-610. https://doi.org/10.1128/CMR.00040-09
  21. Loffler FE, Sun Q, Li J, Tiedje JM. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol. 2000. 66: 1369-1374. https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  22. Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First Nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother. 2005. 49: 3538-3540. https://doi.org/10.1128/AAC.49.8.3538-3540.2005
  23. Pitout JDD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Chrch DL. Molecular Epidemiology of Metallo-beta-Lactamase -Producing Pseudomonas aeruginosa in the Calgary Health Region: Emergence of VIM-2-Producing Isolates. J Clin Microbiol. 2007. 43: 458-461. https://doi.org/10.1128/JCM.43.1.458-461.2005
  24. Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, Nordmann P. Characterization of VIM-2, a carbapenemhydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000. 44: 891-897. https://doi.org/10.1128/AAC.44.4.891-897.2000
  25. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015. 45: 568-585. https://doi.org/10.1016/j.ijantimicag.2015.03.001
  26. Quinteira S, Souse JC, Peixe L. Characterization of In100, a New integron carrying a metallo-${\beta}$-lactamase and a carbenicillinase, from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005. 49: 451-453. https://doi.org/10.1128/AAC.49.1.451-453.2005
  27. Riccio ML, Franceschini N, Boschi L, Caravelli B, Cornaglia G, Fontana R, Amicosante G, Rossolini GM. Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother. 2000. 44: 1229-1235. https://doi.org/10.1128/AAC.44.5.1229-1235.2000
  28. Riccio ML, Pallecchi L, Docquier JD, Cresti S, Catania MR, Pagani L, Lagatolla C, Cornaglia G, Fontana R, Rossolini GM. Clonal relatedness and conserved integron structures in epidemiologically unrelated Pseudomonas aeruginosa strains producing the VIM-1 metallo-beta-lactamase from different Italian hospitals. Antimicrob Agents Chemother. 2005. 49: 104-110. https://doi.org/10.1128/AAC.49.1.104-110.2005
  29. Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-${\beta}$-lactamses-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother. 2011. 66: 2791-2796. https://doi.org/10.1093/jac/dkr381
  30. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, Kato H, Kai K, Arakawa Y. PCR Typing of Genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003. 43: 458-461. https://doi.org/10.1128/JCM.43.1.458-461.2005
  31. Talbot GH, Bradley J, Edwards JE, Gilbert D, Scheld M, Bartlett JG. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis. 2006. 42: 657-668. https://doi.org/10.1086/499819
  32. Toleman MA, Biedenbach D, Bennett DM, Jones RN, Walsh TR. Italian metallo-beta-lactamases: a national problem? Report from the SENTRY Antimicrobial Surveillance Programme. J Antimicrob Chemother. 2005. 55: 61-70. https://doi.org/10.1093/jac/dkh512
  33. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-betalactamases: the quiet before the storm? Clin Microbiol Rev. 2005. 18: 306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005
  34. Watanabe JJ, Ko WC, Wu JJ. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991. 45: 1343-1348.
  35. Yang B-S, Hong K-S, Jung S-B, Kwon Y-H, Jeong JY, Lee M-J, Lee H-I, Park M-S, Choi S-G. Phenotypic and Genotypic Detection of Metallo-${\beta}$-Lactamase Producing Pseudomonas aeruginosa. Korean Journal of Clinical Laboratory Science. 2012. 44: 81-85.
  36. Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-encoded metallo-${\beta}$-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother. 2001. 45: 1343-1348. https://doi.org/10.1128/AAC.45.5.1343-1348.2001
  37. Yong D, Shin HB, Kim YK, Cho J, Lee WG, Ha GY, et al. Increase in the prevalence of carbapenem-resistant Acinetobacter isolates and ampicillin-resistant non-typhoidal Salmonella species in Korea: a KONSAR study conducted in 2011. Infect Chemother. 2014. 46: 84-93. https://doi.org/10.3947/ic.2014.46.2.84