• Title/Summary/Keyword: metal-ion battery

Search Result 114, Processing Time 0.021 seconds

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode (첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Ionic Liquid-based Electrolytes for Li Metal/Air Batteries: A Review of Materials and the New 'LABOHR' Flow Cell Concept

  • Bresser, Dominic;Paillard, Elie;Passerini, Stefano
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • The $Li-O_2$ battery has been attracting much attention recently, due to its very high theoretical capacity compared with Li-ion chemistries. Nevertheless, several studies within the last few years revealed that Li-ion derived electrolytes based on alkyl carbonate solvents, which have been commonly used in the last 27 years, are irreversibly consumed at the $O_2$ electrode. Accordingly, more stable electrolytes are required capable to operate with both the Li metal anode and the $O_2$ cathode. Thus, due to their favorable properties such as non volatility, chemical inertia, and favorable behavior toward the Li metal electrode, ionic liquid-based electrolytes have gathered increasing attention from the scientific community for its application in $Li-O_2$ batteries. However, the scale-up of Li-$O_2$ technology to real application requires solving the mass transport limitation, especially for supplying oxygen to the cathode. Hence, the 'LABOHR' project proposes the introduction of a flooded cathode configuration and the circulation of the electrolyte, which is then used as an oxygen carrier from an external $O_2$ harvesting device to the cathode for freeing the system from diffusion limitation.

Study of Li-Ion Diffusion and Phase Transition in Cathode of Li-Ion Battery (리튬 이차전지의 양극 내부 이온 확산 및 상변화 특성 연구)

  • Kim, Sooil;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.665-667
    • /
    • 2013
  • Metal ions show various transitions in the cathode of a lithium-ion battery. The diffusion process of lithiumions and the phase transition in the cathode need to be thoroughly understood for the advanced design of an improved lithium-ion battery. Here, we employ a phase field model to simulate the diffusion of lithiumions and to study the phase transition in the cathode.

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries (리튬금속과 고체전해질의 계면 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

Preparation and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Random Copolymer-Polyolefin Pore-filling Separators with Metal Ion Trap Capability for Li-ion Secondary Battery (리튬이온 이차전지용 금속이온 선택성 술폰화 폴리아릴렌에테르술폰 공중합체-폴리올레핀 함침격리막 제조 및 특성)

  • Jeong, Yeon Tae;Ahn, Juhee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.310-317
    • /
    • 2016
  • Lithium ion secondary battery (LISB) is an energy conversion system operated via charging-discharging cycle based on Lithium ion migration. LISB has a lot of advantages such as high energy density, low self-discharge rate, and a relatively high lifetime. Recently, increasing demands of electric vehicles have been encouraging the development of LISB with high capacity. Unfortunately, it causes some critical safety issues. It includes dendrite formation on negative electrode, resulting in electric shortage problems and battery explosion. Also, the elevated temperatures occurred during the LISB operation induces thermal shrinkage of polyolefin (e.g., polyethylene and polypropylene) separators. Consequently, the low thermal stability leads to decay of LISB performances and the reduction of lifetime. In this study, sulfonated poly (arylene ether sulfone) (SPAES) random copolymers were used as key materials to prepare polyolefin pore-filling separator. The resulting separators were evaluated in the term of metal ion chelation capability associated with dendrite formation, $Li^+$ ion conductivity and thermal durability.

Charge/Discharge Characteristics of Lithium ion Secondary Battery Using Ag-deposited Graphite as Anode Active Material (은 담지한 흑연을 부극 활물질로 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.727-732
    • /
    • 1998
  • Ag-deposited graphite powder was prepared by a chemical reduction method of metal particles onto graphite powder. X-ray diffraction observation of Ag-deposited graphite powder revealed that silver existed in a metallic state, but not in an oxidized one. From SEM measurement, ultrafine silver particles were highly dispersed on the surface of graphite particles. Cylindrical lithium ion secondary battery was manufactured using Ag-deposited graphite anodes and $LiCoO_2$ cathodes. The cycleability of lithium ion secondary battery using Ag-deposited graphite anodes was superior to that of original graphite powder. The improved cycleability may be due to both the reduction of electric resistance between electrodes and the highly durable Ag-graphite anode.

  • PDF

Study on Design Parameter of Aluminum Micro V-notched Component with Thin Sheet Metal (알루미늄 박판 미세 V-notching 가공부위의 성형 Parameter 관한 연구)

  • Kim, S.M.;Park, J.W.;Lee, H.M.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.249-252
    • /
    • 2008
  • Micro V-notching process has been used to manufacturing the safety component in Li-Ion battery. These kinds of safety component in Li-Ion battery plays an important role in the explosion from excessive overheating. Therefore, it is very crucial to estimate accurately the working pressure range of the safety component with micro V-notch. In this study, the relationship with the working internal pressure in Li-Ion battery and fracture phenomenon in micro V-notch was investigated through the numerical analysis. The numerical analysis is especially adopted the finite element method with ductile fracture criteria.

  • PDF

Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2 Secondary Battery Scraps (Li(Ni1-x-yCoxMny)O2계 이차전지 공정 스크랩으로부터 회수한 전이금속을 활용한 리튬이차전지 양극재 제조)

  • Lee, Jae-Won;Kim, Dae Weon;Jang, Seong Tae
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • Cathode materials and their precursors are prepared with transition metal solutions recycled from the the waste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a $H_2$ and C-reduction process. The recycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the transition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxide by calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathode material has a layered structure and particle size of about 10 ${\mu}m$. The cathode materials also exhibited a capacity of about 160 mAh/g with a retention rate of 93~96% after 100 cycles.

Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials

  • Kim, Sang Woo;Cho, Kuk Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • With increasing interest in flexible electronic devices and wearable appliances, flexible lithium ion batteries are the most attractive candidates for flexible energy sources. During the last decade, many different kinds of flexible batteries have been reported. Although research of flexible lithium ion batteries is in its earlier stages, we have found that developing components that satisfy performance conditions under external deformation stress is a critical key to the success of flexible energy sources. Among the major components of the lithium ion battery, electrodes, which are connected to the current collectors, are gaining the most attention owing to their rigid and brittle character. In this mini review, we discuss candidate materials for current collectors and the previous strategies implemented for flexible electrode fabrication.

The Electrochemical properties of Lithium ion Secondary Battery using Ag-deposited graphite anode (은 담지한 혹연을 부극 활물질로 이용한 Li ion 2차전지의 전기화학적 특성 연구)

  • 김상필;조정수;박정후;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.387-390
    • /
    • 1998
  • New Ag-deposited graphite anodes were developed using wet chemical reduction methods for depositing Ag metal onto graphite particles. In this paper, we investigated X-ray diffraction pattern and charge-discharge behavior for Ag-deposited graphite anode. The Lithium ion cello using Ag-deposited graphite anode showed a high average discharge voltage of 3.6∼3.W and a excellent cycle ability than that of conventional graphite. Little capacity loss in this battery may be due to the highly durable Ag-deposited graphite anodes.

  • PDF