• 제목/요약/키워드: metal-activated carbon

검색결과 168건 처리시간 0.026초

Biochemical Characterization of Protease Produced by Cordyceps nutans

  • Kim, Seon Ah;Kim, Mi-Kyung
    • 대한임상검사과학회지
    • /
    • 제44권4호
    • /
    • pp.216-221
    • /
    • 2012
  • The fruiting body of Cordyceps is derived from the pupa or larva of insects infected by the entomopathogenic fungi Cordyceps. The fruiting body has been used as an anti-cancer and anti-inflammatory ingredient in traditional Chinese medicine. The biochemical characteristics of protease isolated from Cordyceps nutans were investigated in this study. The culturing period for production of protease by C. nutans was 10days. The acidity was pH 7.0, and the temperature was $25^{\circ}C$. The carbon and nitrogen sources for the production of the protease were glucose and yeast extract, respectively. The ratio of C/N was 2% glucose and 0.6% yeast extract. 0.06% $CuSO_4$ was used as the inorganic salt. The investigation into the acidity of the protease produced by C. nutans revealed that the optimal pH and temperature were pH 7.0 and $30^{\circ}C$. The stability of the protease was shown as pH 6.0~9.0 and $30{\sim}50^{\circ}C$. The investigation into the influence of the metal ions on the enzyme activation of C. nutans revealed that it was inhibited in $ZnSO_4$ and activated in $FeSO_4$.

  • PDF

GAC에 의한 고농도 계면활성제 폐수의 흡착처리 (Treatment of the Wastewater of High Surfactant Concentration by GAC GAC Adsorption)

  • 김학성;이진필;한훈석
    • 한국응용과학기술학회지
    • /
    • 제16권1호
    • /
    • pp.59-65
    • /
    • 1999
  • For a cosmetic plant wastewater containing surfactants of high concentration, adsorption treatment by granular activated carbon(GAC) having different pore size distribution was studied. Three sorts GACs were used and regenerated afterwards with methanol. Experiments were composed of batch process and column test for both virgin and regenerated GACs. Following conclusions were drawn from the study: Methylene blue activating substance(MBAS) adsorption data from the batch tests for three GACs are described well by BET isotherm and Freundich isotherm. Simulation with the BET isotherm shows that maximum adsorption appears to be affected not only by specific surface area but also by pore size distribution. Maximum adsorption from the BET isotherm for MBAS appears to diminish as the number of reactivation increases. The diminishing ratio of maximum adsorption appears to decrease as the pore size decreases. Recovery ratio of the methanol by vacuum evaporation from the spent methanol ranges from 95% to 97%.

Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review

  • Yaqub, Muhammad;Lee, Seung Hwan
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.363-375
    • /
    • 2019
  • Micellar-enhanced ultrafiltration (MEUF) is a surfactant-based separation technique and has been investigated for the removal of heavy metals from wastewater. The performance of heavy metals removal from wastewater through MEUF relies on membrane characteristics, surfactant properties, various operational parameters including operating pressure, surfactant and heavy metal concentration, pH of the solution, temperature, and presence of dissolved solutes and salts. This study presents an overview of literature related to MEUF with respect to the all significant parameters including membranes, surfactants, operating conditions and MEUF hybrid processes. Moreover, this study illustrates that MEUF is an adaptable technique in various applications. Nowadays water contamination caused by heavy metals has become a serious concern around the globe. MEUF is a significant separation technique in wastewater treatment that should be acknowledged, for the reason that removal of heavy metals contamination even at lower concentrations becomes achievable, which is evidently made known in the presented review. Hybrid processes presented the better results as compared to MEUF. Future studies are required to continue the experimental work with various combinations of surfactant and heavy metals, and to investigate for the treatment of concentrated solutions, as well as for real industrial wastewater.

녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거 (Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation)

  • 장희진;권기훈;윤광석;송호철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.

Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar

  • Choi, Ik-Won;Kim, Jae-Hoon;Lee, Soo-Hyung;Lee, Jae-Kwan;Seo, Dong-Cheol;Cho, Ju-Sik
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.489-494
    • /
    • 2016
  • Carbon-based sorbents such as biochar and activated carbon have been proven to be cost-effective in removing pollutants containing heavy metals from wastewater. The aim of this study was using batch experiment to evaluate the adsorption characteristics of heavy metals in single-metal conditions onto reed biochar for treating wastewater containing heavy metals. The removal rates of heavy metals were in the order of Pb > $Cu{\fallingdotseq}Cd{\fallingdotseq}Zn$, showing the adsorption efficiency of Pb was higher than the other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained from adsorption of Pb on reed biochar. For reed biochar, the Langmuir model provided a slightly better fit than the Freundlich model. Lead was observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The main functional groups of reed biochar were aromatic carbons. Overall, the results suggested that reed biochar could be useful adsorbent for treating wastewater containing Pb.

폐수처리제(廢水處理劑)로서의 Zeolite의 이용(利用) (Utilization of Zeolite in Waste Water Treatment.)

  • 이전식;이정재;최정
    • 한국환경농학회지
    • /
    • 제6권2호
    • /
    • pp.46-52
    • /
    • 1987
  • 폐수중(廢水中) 중금속(重金屬)의 제거제(除去劑)로서 천연(天然) Zeolite의 이용(利用) 가능성(可能性)을 조사(調査)하기 위하여 활성탄(活性炭)을 대조(對照)로 하여 흡착실험(吸着實驗) 및 Column 투과실험(透過實驗)을 한 결과(結果)는 다음과 같았다. Freundlich 흡착상수(吸着常數) ${\frac{1}{n}$값이 $0.12{\sim}0.45$, K값 $18.77{\sim}59.48$인 것으로 보아 천연(天然) Zeolite는 활성탄(活性炭)보다 더 효과적(效果的)인 중금속(重金屬) 흡착제(吸着劑)였다. 동일(同一)한 입경(粒徑), 동일(同一)한 투과정도(透過程度)에 있어서 천연(天然) Zeolite는 활성탄(活性炭)보다 더 많은 양(量)의 중금속(重金屬)을 흡착(吸着)하였다. 입자(粒子)가 작을수록 흡착량(吸着量)은 증가(增加)하는 경향(傾向)이었으며 폐수중(廢水中) 중금속(重金屬) 흡착제吸(着劑)로서의 최적입경(最適粒徑)은 $0.5{\sim}2.0mm$ 화분(畵分)이었다. 중김속용액(重金屬溶液)의 Column 투과속도(透過速度)가 느릴수록 또 혼합용액(混合溶液)에서 보다 단일용액(單一溶液)에서 더 많은 량(量)의 중금속(重金屬)이 흡착(吸着)되었다. 혼합용액내(混合溶液內)에서 중금속(重金屬)의 흡착량(吸着量)은 Cu>Zn>Cd의 순(順)이었다.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제12권7호
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

PAN계 ACF의 최적 활성화 공정에 따른 흡착특성과 나노입자 첨착에 의한 SO2 흡착특성 (The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and SO2 Adsorption Characteristics by the Impregnated Nanoparticles)

  • 이진채;김영채
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.532-538
    • /
    • 2006
  • 탄화 및 활성화 조건을 매개체로 여러 등급의 Polyacrylonitrile (PAN)계 ACF (ACF : Activated Carbon Fiber)를 제조하여 최적의 비표면적을 나타내는 활성화 공정을 알아보았고, 가장 큰 비표면적을 갖는 PAN계 ACF에 대한 표면특성 및 독성가스 등에 대한 흡착특성을 분석하였다. 시험결과 활성화 온도가 증가할수록 비표면적이 증가하고 탄화 온도가 감소할수록 비표면적이 감소하였고, $900^{\circ}C$로 15 min간 탄화한 후 $900^{\circ}C$로 30 min간 활성화 공정을 거친 ACF가 $1204m^2/g$의 가장 높은 비표면적을 나타내었고 요오드 및 테러용 독성가스에 대한 흡착 성능시험 결과 기존의 흡착제보다 우수하였다. 또한 선택적 흡착을 위한 기능성을 부여하기 위하여 기존의 금속염을 침적하는 방법을 대체하여 비교적 안정화된 금속나노입자(Ag, Pt, Cu, Pd)를 제조하여 첨착하였고 이에 대한 표면특성 및 $SO_{2}$에 대한 흡착특성을 분석하였다. 금속나노입자 첨착 ACF에 대한 $SO_{2}$ 흡착성능 시험결과 Ag, Pt, Cu 나노입자를 첨착한 ACF는 무첨착 ACF의 파과시간(326 sec)과 비교 할 때 크게 변함이 없었으나 Pd 나노입자를 첨착한 ACF는 파과시간이 925 sec로 $SO_{2}$ 흡착성능이 매우 우수함을 알 수 있었다.

하론-1301로부터 CF$_3$I와 $C_2$F$_{5}I$ 의 합성 (Synthesis Study of CF$_3$I and $C_2$F$_{5}I$ from Halon-1301)

  • 김재덕;임종성;이윤우;이윤용
    • 한국화재소방학회논문지
    • /
    • 제16권3호
    • /
    • pp.32-38
    • /
    • 2002
  • 지구의 오존층 보호를 위해 폐기되는 $CF_3Br$재활용을 위해 $CF_3Br$을 원료로 $CF_3I$$C_2F_5I$의 합성연구를 수행하였다. 실험실규모의 $CF_3$I$C_3F_5I$의 합성실험장치에서 CuI, Kl, $K_2CO_3$, KF등의 금속염을 활성탄과 알루미나에 담지시킨 촉매를 사용하여 $400~600^{\circ}C$에서 반응을 실시하였다. 반응실험 결과 주생성물은 $CF_3I$$C_2F_5I$ 이며 미량의 $C_2F_6$, $CF_4$, $CF_2Br_2$등도 생성되었다. $CF_3I$합성촉매로는 활성탄에 7.5wt% KI와 $K_2CO_3$를 담지시킨 것이 가장 우수한 성능을 나타내었으며 $C_2F_5I 의 합성촉매로는 알루미나에 7.5wt% Cul를 담지시킨 것이 가장 우수하였다. 또한 최적 반응온도는 $500^{\circ}C$ 부근이었다.

축산현장에서 발생된 암모니아 기체의 흡착기반 회수 동향 및 향후 전략 (Trend and Future Strategy of Ammonia Gas Recovery based on Adsorption from Livestock Fields)

  • 채상엽;류광민;이상훈
    • 자원리싸이클링
    • /
    • 제32권6호
    • /
    • pp.45-53
    • /
    • 2023
  • 본 연구에서는 축산 분야에서 배출되는 암모니아를 효과적으로 회수할 수 있는 흡착기술의 연구개발 동향 및 향후 전략에 대해 논의하였다. 적절한 암모니아 흡착제는 표면의 산성기나 수소결합기를 가지며 높은 비표면적과 암모니아 흡착에 적절한 표면구조를 지니어야 한다. 일반적인 암모니아 흡착제로는 활성탄이나 제올라이트 등의 광물질이 널리 쓰이나 대체로 흡착효과가 낮아 표면 개질 등을 통한 개선이 필요하다. 일례로 금속염화물이 다공성 흡착제에 포함되었을 때, 활성탄이나 제올라이트의 표면에 흡착 시보다 암모니아 흡착량이 더 증가하는 것으로 알려져 있다. 최근에는 MOFs (Metal-Organic Frameworks)나 POPs (Porous Organic Polymers) 같은 새로운 종류의 흡착제가 개발 및 적용되고 있으며 조절가능한 높은 비표면적과 다공성으로 매우 높은 암모니아 흡착용량을 보였다. 그 외에 프러시안 블루가 높은 암모니아 흡탈착성능 및 선택성을 보였는데. 이는 축산폐기물 배출 암모니아 회수에 관련하여 상대적으로 유리한 측면으로 보인다. 향후 다양한 흡착제를 이용, 축산현장에 맞는 조건에서 암모니아 흡탈착 효율 및 순도를 평가하는 연구가 더 활발히 진행되어야 할 것이다. 아울러 암모니아 회수를 극대화하기 위한 효과적인 전/후처리 공정도 병행되어야 한다.