DOI QR코드

DOI QR Code

Trend and Future Strategy of Ammonia Gas Recovery based on Adsorption from Livestock Fields

축산현장에서 발생된 암모니아 기체의 흡착기반 회수 동향 및 향후 전략

  • Sangyeop Chae (Dept. of Environmental Science, Keimyung University) ;
  • Kwangmin Ryu (Dept. of Environmental Science, Keimyung University) ;
  • Sang-hun Lee (Dept. of Environmental Science, Keimyung University)
  • 채상엽 (계명대학교 환경학부 환경과학전공) ;
  • 류광민 (계명대학교 환경학부 환경과학전공) ;
  • 이상훈 (계명대학교 환경학부 환경과학전공)
  • Received : 2023.12.11
  • Accepted : 2023.12.21
  • Published : 2023.12.31

Abstract

This study discussed the trend and future strategy of adsorption technology R&D to effectively recover ammonia emitted from the livestock fields. A proper ammonia adsorbent should incorporate acidic or hydrogen bonding functional groups on the surface, as well as a high specific surface area and a good surface structure appropriate for ammonia adsorption. Activated carbon and minerals such as zeolite have widely been used as ammonia adsorbents, but their adsorption effects are generally low, so any improvement through surface modification should be necessary. For example, incorporation of metal chloride included in a porous adsorbent can promote ammonia adsorption effectiveness. Recently, new types of adsorbents such as MOFs (Metal-Organic Frameworks) and POPs (Porous Organic Polymers) have been developed and utilized. They have shown very high ammonia adsorption capacity because of adjustable and high specific surface area and porosity. In addition, Prussian Blue exhibited high ammonia adsorption and desorption performance and selectivity. This looks relatively advantageous in relation to the recovery of ammonia from livestock waste discharge. In the future, further research should be made to evaluate ammonia adsorption/desorption efficiency and purity using various adsorbents under conditions suitable for livestock sites. Also, effective pre- and/or post-treatment processes should be integrated to maximize ammonia recovery.

본 연구에서는 축산 분야에서 배출되는 암모니아를 효과적으로 회수할 수 있는 흡착기술의 연구개발 동향 및 향후 전략에 대해 논의하였다. 적절한 암모니아 흡착제는 표면의 산성기나 수소결합기를 가지며 높은 비표면적과 암모니아 흡착에 적절한 표면구조를 지니어야 한다. 일반적인 암모니아 흡착제로는 활성탄이나 제올라이트 등의 광물질이 널리 쓰이나 대체로 흡착효과가 낮아 표면 개질 등을 통한 개선이 필요하다. 일례로 금속염화물이 다공성 흡착제에 포함되었을 때, 활성탄이나 제올라이트의 표면에 흡착 시보다 암모니아 흡착량이 더 증가하는 것으로 알려져 있다. 최근에는 MOFs (Metal-Organic Frameworks)나 POPs (Porous Organic Polymers) 같은 새로운 종류의 흡착제가 개발 및 적용되고 있으며 조절가능한 높은 비표면적과 다공성으로 매우 높은 암모니아 흡착용량을 보였다. 그 외에 프러시안 블루가 높은 암모니아 흡탈착성능 및 선택성을 보였는데. 이는 축산폐기물 배출 암모니아 회수에 관련하여 상대적으로 유리한 측면으로 보인다. 향후 다양한 흡착제를 이용, 축산현장에 맞는 조건에서 암모니아 흡탈착 효율 및 순도를 평가하는 연구가 더 활발히 진행되어야 할 것이다. 아울러 암모니아 회수를 극대화하기 위한 효과적인 전/후처리 공정도 병행되어야 한다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요 사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)'과제의 일환으로 수행되었다.

References

  1. Lee, S-H., Bae, S., 2022 : A strategy for ammonia odor monitoring, prediction, and reduction from livestock manure wastes in Korea, Geosystem Engineering, 25(1-2), pp.35-43. https://doi.org/10.1080/12269328.2022.2120094
  2. KEI (Korea Environmental Institute), 2017 : Management Strategies to Reduce PM-2.5 Emission: Emphasis-Ammonia, KEI Fundamental Research Report (Korean), pp.1-89.
  3. Jafari, M. J., Matin, A. H., Rahmati, A., et al., 2018 : Experimental optimization of a spray tower for ammonia removal. Atmospheric Pollution Research, 9, pp.783-790. https://doi.org/10.1016/j.apr.2018.01.014
  4. Takahashi, A., Minami, K., Noda, K., et al., 2020 : Trace Ammonia Removal from Air by Selective Adsorbents Reusable with Water, ACS Appl. Mater. Interfaces, 12(13), pp.15115-15119. https://doi.org/10.1021/acsami.9b22384
  5. DeCoste, J. B., Denny, M. S., Peterson, G. W., et al., 2016 : Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption, Chem. Sci., 7(4), pp.2711-2716. https://doi.org/10.1039/C5SC04368A
  6. Han, B., Butterly, C., Zhang, W., et al., 2021 : Adsorbent materials for ammonium and ammonia removal: A review, J. Clean. Prod., 283, 124611.
  7. Khabzina, Y., Farrusseng, D., 2018 : Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater, 265, pp.143-148. https://doi.org/10.1016/j.micromeso.2018.02.011
  8. Hao, J. N., Yan, B., 2016 : Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide functionalized MOF, Nanoscale, 8(5), pp.2881-2886. https://doi.org/10.1039/C5NR06066D
  9. Maia, G. D. N., Day, G. B., Gates, R. S., et al., 2012 : Ammonia biofiltration and nitrous oxide generation during the start-up of gas-phase compost biofilters, Atmos. Environ., 46, pp.659-664. https://doi.org/10.1016/j.atmosenv.2011.10.019
  10. Chen, D. L., Sun, J. L., Bai, M., et al., 2015 : A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: Application of lignite, Sci. Rep., 5(1), 16689.
  11. Dong, Y., Yuan, H., Zhang, R., et al., 2019 : Removal of ammonia nitrogen from wastewater: A review, Trans. ASABE, 62(6), pp.1767-1778. https://doi.org/10.13031/trans.13671
  12. Gupta, V. K., Sadegh, H., Yari, M., et al., 2015 : Removal of ammonium ions from wastewater a short rev iew in development of efficient methods, Glob. J. Environ. Sci. Manag., 1(2), pp.149-158.
  13. Kinidi, L., Tan, I. A. W., Wahab, N. B. A., et al., 2018 : Recent development in ammonia stripping process for industrial wastewater treatment, Int. J. Chem. Eng., pp.14.
  14. Ma, Z., Jia, Q., Tao, C., et al., 2020 : Highlighting unique function of immobilized superoxide on TiO2 for selective photocatalytic degradation, Sep. Purif. Technol., 238, 116402.
  15. Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N. P., et al., 2017 : Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors, Bioresour. Technol., 245, pp.81-89. https://doi.org/10.1016/j.biortech.2017.08.019
  16. Tao, C., Jia, Q. P., Han, B., et al., 2020 : Tunable selectivity of radical generation over TiO2 for photocatalysis, Chem. Eng. Sci. 214, p.7.
  17. Ye, Y. Y., Ngo, H. H., Guo, W. S., et al., 2018 : A critical review on ammonium recovery from wastewater for sustainable wastewater management, Bioresour. Technol., 268, pp.749-758. https://doi.org/10.1016/j.biortech.2018.07.111
  18. Zhang, J., Zheng, L., Ma, Y., et al., 2022 : A mini-review on NH3 separation technologies: recent advances and future directions, Energy Fuels, 36(24), pp.14516-14533. https://doi.org/10.1021/acs.energyfuels.2c02511
  19. Pandey, B. and Chen, L., 2021 : Technologies to recover nitrogen from livestock manure - A review, Sci. Total Environ., 784, 147098.
  20. Kim, S.-D., Kwak, J.-H., Min, K.-M., et al., 2017 : System development of ammonia deaeration and adsorption/desorption, Final report of Project(2014000150007), Korea Environmental Industry & Technology Instituter, Seoul, Korea.
  21. Lee, M.-K., Kim, D., Kim, K., et al., 2019 : Policy improvement to reduce odor and environmental pollution in agricultural and livestock industry, KREI basic research report R896 Research document 1, pp.1-177, Korea Rural Economic Institute, Naju, Korea.
  22. Kim, K.-Y., Park, J.-B., Kim, C.-N., et al., 2006 : Field study of emission characteristics of ammonia and hydrogen sulfide by pig building types, J. Korean Soc. Occup. Environ. Hyg., 16, pp.36-43.
  23. Kim, M-.S., Koo, N., Kim, J.-G., 2020 : A comparative study on ammonia emission inventory in livestock manure compost application through a foreign case study, Korean J. Environ. Biol., 38, pp.71-81. https://doi.org/10.11626/KJEB.2020.38.1.071
  24. Cho, S.-B., Hwang, O.-H., Lee, G., et al., 2015 : The study on investigation of factors and reduction for odor generating substrates from hog farm, NIAS Grant(No. PJ008606), National Institute of Animal Science, Wanju, Korea.
  25. Han, J., Park, S., Song, J.-H., et al., 2018 : A study to establish the 2nd integrated malodor prevention policy, NIER-SP2018-233, National Institute of Environmental Research, Incheon, Korea.
  26. Wang, Y. C., Han, M. F., Jia, T. P., et al., 2021 : Emissions, measurement, and control of odor in livestock farms: A review, Sci. Total Environ., 776, 145735.
  27. Poling, B. E., Prausnitz, J. M., O'Connell, J. P., 2001 : The properties of gases and liquids: McGraw-Hill Education, New York.
  28. Cheema, I. I., Krewer, U., 2018 : Operating envelope of Haber-Bosch process design for power-to-ammonia, RSC Adv., 8(61), pp.34926-34936. https://doi.org/10.1039/C8RA06821F
  29. Susaya, J., Kim, K., 2010 : Removal of gaseous NH3 by water as a sorptive medium: the role of water volume and absorption time, Fresenius Environ. Bull., 19(4a), pp.745-750.
  30. Hanson, D., Kosciuch, E., 2003 : The NH3 mass accommodation coefficient for uptake onto sulfuric acid colutions, J. Phys. Chem. A, 107(13), pp.2199-2208. https://doi.org/10.1021/jp021570j
  31. Lee, J. W., Barin, G., Peterson, G. W., et al., 2017 : A microporous amic acid polymer for enhanced ammonia capture, ACS Appl. Mater. Interfaces 9(39), pp.33504-33510. https://doi.org/10.1021/acsami.7b02603
  32. Moribe, S., Chen, Z., Alayoglu, S., et al., 2019 : Ammonia capture within isoreticular metal-organic frameworks with rod secondary building units, ACS Mater. Lett., 1(4), pp.476-480. https://doi.org/10.1021/acsmaterialslett.9b00307
  33. Nijem, N., Fursich, K., Bluhrn, H., et al., 2015 : Ammonia adsorption and co-adsorption with water in HKUST-1: Spectroscopic evidence for cooperative interactions, J. Phys. Chem. C, 119(44), pp.24781-24788. https://doi.org/10.1021/acs.jpcc.5b05716
  34. Bandosz, T. J., 2006 : Activated carbon surfaces in environmental remediation. Elsevier. New York.
  35. Mochizuki, T., Kubota, M., Matsuda, H., et al., 2016 : Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation, Fuel Process. Technol, 144, pp.164-169. https://doi.org/10.1016/j.fuproc.2015.12.012
  36. Zhang, F., Liang, M., Ye, C., et al., 2020 : Removal of ammonia and hydrogen sulfide from livestock farm by copper modified activated carbon, Global Nest J., 22(2), pp.165-172.
  37. Qajar, A., Peer, M., Andalibi, M. R., et al., 2015 : Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous Mesoporous Mat., 218, pp.15-23. https://doi.org/10.1016/j.micromeso.2015.06.030
  38. Matito-Martos, I., Martin-Calvo, A., Ania, C. O., et al., 2020 : Calero, S. Role of hydrogen bonding in the capture and storage of ammonia in zeolites, Chem. Eng. J., 387, 124062.
  39. Lucero, J. M., Crawford, J. M., Wolden, C. A., et al., 2021 : Tunability of ammonia adsorption over NaP zeolite, Microporous Mesoporous Mater, 324, 111288.
  40. Seredych, M., Ania, C., Bandosz, T. J., 2016 : Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins, J. Hazard. Mater., 305, pp.96-104. https://doi.org/10.1016/j.jhazmat.2015.11.022
  41. Helminen, J., Helenius, J., Paatero, E., et al., 2000 : Comparison of Sorbents and Isotherm Models for NH3-Gas Separation by Adsorption, AIChE J., 46(8), pp.1541-1555 https://doi.org/10.1002/aic.690460807
  42. Cao, Z., Akhtar, F., 2021 : Porous strontium chloride scaffolded by graphene networks as ammonia carriers, Adv. Funct. Mater., 31(30), 2008505.
  43. Tian, X., Qiu, J., Wang, Z., et al., 2022 : A record ammonia adsorption by calcium chloride confined in covalent organic frameworks, ChemComm, 58(8), pp.1151-1154. https://doi.org/10.1039/D1CC06308A
  44. Zhao, X., Wang, Y. X., Li, D. S., et al., 2018 : Metal-organic frameworks for separation, Adv. Mater., 30(37), 1705189.
  45. Vikrant, K., Kumar, V., Kim, K.H., et al., 2017 : Metalorganic frameworks (MOFs): potential and challenges for capture and abatement of ammonia, J. Mater. Chem. A, 5(44), pp.22877-22896. https://doi.org/10.1039/C7TA07847A
  46. Rieth, A. J., Dinca, M., 2018 : Controlled gas uptake in metal-organic frameworks with record ammonia sorption, J. Am. Chem. Soc., 140(9), pp.3461-3466. https://doi.org/10.1021/jacs.8b00313
  47. Kim, D.-W., Kang, D.-W., Kang, M., et al., 2020 : High ammonia uptake of a metal-organic framework adsorbent in a wide pressure range, Angew. Chem, Int. Ed., 59(50), pp.22531-22536. https://doi.org/10.1002/anie.202012552
  48. Vikrant, K., Kumar, V., Kim, K. H., et al., 2017 : Metalorganic frameworks (MOFs): potential and challenges for capture and abatement of ammonia, J. Mater. Chem. A, 5(44), pp.22877-22896 https://doi.org/10.1039/C7TA07847A
  49. Rieth, A. J., Wright, A. M., Dinca, M., 2019 : Kinetic stability of metal-organic frameworks for corrosive and coordinating gas capture, Nat. Rev. Mater., 4(11), pp.708-725. https://doi.org/10.1038/s41578-019-0140-1
  50. Jasuja, H., Peterson, G. W., Decoste, J. B., et al., 2015 : Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air, Chem. Eng. Sci., 124, pp.118-124. https://doi.org/10.1016/j.ces.2014.08.050
  51. Yang, Y., Faheem, M., Wang, L., et al., 2018 : Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches, ACS Cent. Sci., 4(6), pp.748-754. https://doi.org/10.1021/acscentsci.8b00232
  52. Luo, L., Li, J., Chen, X., et al., 2022 : Superhigh and reversible NH3 uptake of cobaltous thiocyanate functionalized porous poly ionic liquids through competitive and cooperative interactions, Chem. Eng. J., 427, 131638.
  53. Yang, H., Zuttel, A., Kim, S., et al., 2017 : Effect of boron doping on graphene oxide for ammonia adsorption, ChemNanoMat, 3(11), pp.794-797. https://doi.org/10.1002/cnma.201700187
  54. Yang, C., Wang, J. F., Chen, Y., et al., 2018 : One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption, Nanoscale, 10(23), pp.10979-10985. https://doi.org/10.1039/C8NR02074D
  55. Takahashi, A., Tanaka, H., Parajuli, D., et al., 2016 : Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds, J. Am. Chem. Soc., 138(20), pp.6376-6379. https://doi.org/10.1021/jacs.6b02721
  56. Szymula, A., Wlazlo, L., Sasakova, N., et al., 2021 : The Use of Natural Sorbents to Reduce Ammonia Emissions from Cattle Faeces, Agronomy. 11(12), 2543.