DOI QR코드

DOI QR Code

Mineral Processing Characteristics of Titanium Ore Mineral from Myeon-San Layer in Domestic Taebaek Area

국내 태백지역 면산층 타이타늄 광석의 기초 선광 연구

  • Yang-soo Kim (Korea Institute of Limestone and Advanced Materials) ;
  • Fausto Moscoso-Pinto (Korea Institute of Geoscience and Mineral Resources) ;
  • Jun-hyung Seo (Korea Institute of Limestone and Advanced Materials) ;
  • Kye-hong Cho (Korea Institute of Limestone and Advanced Materials) ;
  • Jin-sang Cho (Korea Institute of Limestone and Advanced Materials) ;
  • Seong-Ho Lee (Korea Institute of Geoscience and Mineral Resources) ;
  • Hyung-seok Kim (Korea Institute of Geoscience and Mineral Resources)
  • Received : 2023.12.11
  • Accepted : 2023.12.22
  • Published : 2023.12.31

Abstract

Titanium's importance as a mineral resource is increasing, but the Korean industry depends on imports. Ilmenite is the principal titanium ore. However, research and development from raw materials have not been investigated yet in detail. Hence, measures to secure a stable titanium supply chain are urgently needed. Accordingly, through beneficiation technology, we evaluated the possibility of technological application for the efficient recovery of valuable minerals. As a result of the experiments, we confirmed that mineral particles existed as fine particles due to weathering, making recovery through classification difficult. Consequently, applying beneficiation technologies, i.e., specific gravity separation, magnetic separation, and flotation, makes it possible to recover valuable minerals such as hematite and rutile. However, there are limitations in increasing the quality and yield of TiO2 due to the mineralogical characteristic of the hematite and rutile contained in titanium ore. Hametite is combined with rutile even at fine particles. Therefore, it is essential to develop mineral processing routes, to recover iron, vanadium, and rare earth elements as resources. On that account, we used grinding technology that improves group separation between constituent minerals and magnetic separation technology that utilizes the difference in magnetic sensitivity between fine mineral particles. The development of beneficiation technology that can secure the economic feasibility of valuable materials after reforming iron oxide and titanium oxide components is necessary.

타이타늄은 다양한 용도에 사용되고 있어 광물자원으로서의 중요성이 높아지고 있으나 대부분 수입에 의존하고 있다. 국내에도 주로 일메나이트로 구성된 타이타늄 원광이 존재하며 이를 개발하기 위한 연구가 진행되고 있지만 원료 소재로의 개발은 진행되고 있지 않아 안정적인 타이타늄 공급망을 확보하기 위한 대책이 시급하다. 이에 본 연구에서는 타이타늄 광물의 안정적인 확보를 위해 선광 기술별 기초 실험을 실시하여 유가광물의 효율적 회수를 위한 기술 적용 가능성을 평가하였다. 실험 결과, 풍화작용으로 인한 광물들의 입자가 미립의 형태로 존재하여 분급을 통한 회수는 어려운 것으로 확인되었다. 비중선별, 부유선별 및 자력선별의 선광기술을 적용한 결과, 적철석과 금홍석 등의 유가광물 회수가 가능하다. 그러나 타이타늄 광석에 함유된 적철석과 금홍석이 미세한 입자로 물리적으로 결합되어 있는 광물학적 특성에 의해 산화티탄의 품위와 실수율을 높이는데 한계성이 있다. 따라서 타이타늄 광석 내 산화티탄과 더불어 철, 바나듐, 희토류 성분도 함께 자원으로 활용할 수 있는 용도 개발이 필요하며, 이를 위해서 구성광물 간 단체분리도 향상 분쇄 기술, 미세한 광물입자 간 자력 감응 차이를 이용한 자력선별 기술, 그리고 산화철 및 산화티탄 성분의 개질 후 유가물질을 경제적으로 확보할 수 있는 선광 기술의 개발이 필요하다.

Keywords

Acknowledgement

본 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다. (RS-2023-00235021, 고효율 타이타늄 광석 선광공정 및 부산물 활용 기술개발).

References

  1. Ilankoon, I.M.S.K., Tang, Y., Ghorbani, Y., et al., 2018: The current state and future directions of percolation leaching in the Chinese mining industry: Challenges and opportunities, Minerals Engineering, 125, pp.206-222. https://doi.org/10.1016/j.mineng.2018.06.006
  2. Meinhold, G., 2010 : Rutile and its applications in earth sciences, Earth-Science Reviews, 102(1-2), pp.1-28. https://doi.org/10.1016/j.earscirev.2010.06.001
  3. Kim, Y.J., Lee H. S., Lee, H.B., 2021 : Rare Metal Raw Material Trade Analysis 2021, Korean Institute of Geoscience and Minerals KIGAM, Daejeon, South Korea, ISBN 979-11-90505-18-5.
  4. Sohn, H.S., Jung, J. Y., 2016 : Current Status of Titanium Smelting Technology, Journal of Korean Institute of Resources Recycling, 25(4), pp.68-79. https://doi.org/10.7844/kirr.2016.25.4.68
  5. Sohn, H.S., 2021 : Current Status of Titanium Recycling Technology, Journal of Korean Institute of Resources Recycling, 30(1), pp.26-34. https://doi.org/10.7844/kirr.2021.30.1.26
  6. Park, C.H., Yu, J.H, Oh, M.K., et al., 2022 : Detection of Titanium bearing Myeonsan Formation in the Joseon Supergroup base on Spectral Analysis and Machine Learning, Economic and Environmental Geology, 55(2), pp.197-207. https://doi.org/10.9719/EEG.2022.55.2.197
  7. Mozammel, M., Sadrnezhaad, S.K., Khoshnevisan, A., et al., 2013 : Kinetics and reaction mechanism of isothermal oxidation of Iranian ilmenite concentrate powder, Journal of Thermal Analysis Calorimetry, 112, pp.781-789. https://doi.org/10.1007/s10973-012-2639-1
  8. Xiao, W., Lu, X.G., Zou, X.L., et al., 2013 : Phase transformation, micro-morphology and its mechanism in oxidation of ilmenite (FeTiO3) Powder, Transactions of Nonferrous Metals Society of China, 23, pp.2439-2445. https://doi.org/10.1016/S1003-6326(13)62752-1
  9. Feng, Y., Pan. Y., Xiao, B., et al., 2023 : Hydrothermal alteration of magmatic titanite: implications for REE remobilization and the formation of ion-adsorption HREE deposits, South China, American Mineralogist, 108, pp. 2051-2064.
  10. Abdel-Karim, A.A., Barakat, M.G., 2017 : Separation, upgrading, and mineralogy of placer magnetite in the black sands, northern coast of Egypt, Arabian Journal of Geosciences, 10, 298.
  11. Rejith, R.G., Sundararajan, M., 2018 : Combined magnetic, electrostatic, and gravity separation techniques for recovering strategic heavy minerals from beach sands, Marine Georesources and Geotechnology, 35, pp.959-965. https://doi.org/10.1080/1064119X.2017.1403523
  12. Wills, B.A., Napier-Munn, 2006 : Wills'Mineral Processing Technology: An Introduction to the practical aspects of ore treatment and mineral recovery, 7th edition, Elsevier Science & Technology Books: London, United Kingdom, ISBN 0750644508.
  13. Chen, Q., Xu, B., Zhu, Y., et al., 2018 : Detrimental effects of slimes on the flotation of rutile from eclogite ore, Result in Physics, 10, pp.250-255. https://doi.org/10.1016/j.rinp.2018.06.013
  14. Quast, K., 2017 : An investigation of the flotation minimum in the oleate flotation of hematite under alkaline conditions, Minerals Engineering, 113, pp.71-82. https://doi.org/10.1016/j.mineng.2017.08.002
  15. Rosenblum, S., Brownfield, I.K., 2000 : Magnetic Susceptibilities of minerals; US Geological Survey Open-File Report 99-529; US Department of the Interior: Washington, DC, USA. Available online: http://pubs.usgs.gov/of/1999/ ofr-99-0529/, November 28, 2023.
  16. Kropacek, V., Krs, M., Janak, F., 1971 : Magnetism of natural pyrrhotite, haematite and ilmenite, Studia Geophysical et Geodaetica, 15(2), pp.161-172. https://doi.org/10.1007/BF01623913
  17. Iranmanesh, M., Hulliger, J., 2017 : Magnetic separation: Its application in mining, waste purification, medicine, biochemistry and chemistry, Chemical Society Reviews Journal, 46, pp.5925-5934. https://doi.org/10.1039/C7CS00230K
  18. Jena, B.C., Dresler, W., Reilly I.G., 1995 : Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada, Minerals Engineering, 8, pp.159-168. https://doi.org/10.1016/0892-6875(94)00110-X