• Title/Summary/Keyword: metal-activated carbon

Search Result 169, Processing Time 0.029 seconds

Characterization of a Novel MnS-ACF/TiO2 Composite and Photocatalytic Mechanism Derived from Organic Dye Decomposition

  • Zhu, Lei;Jo, Sun-Bok;Jo, Jung-Hwan;Ye, Shu;Ullah, Kefayat;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • Activated carbon fiber (ACF) was modified with MnS nanoparticles to prepare MnS-ACF, and it was employed for preparation of MnS-$ACF/TiO_2$ composites with titanium (IV) n-butoxide (TNB). The properties of MnS-$ACF/TiO_2$ composites were characterized by XRD, SEM, and EDX. EDX results showed the presence of C, O, and Ti as major elements and traces of the metal elements Mn and S. The photocatlytic activity was evaluated by degradation of methyl blue (MB) and methyl orange (MO) dye. The results demonstrated that as-prepared samples could effectively photodegrade MB and MO under UV irradiation. Subsequently, the decomposition of MB solution showed the combined effects of adsorptions by ACF and enhanced photocatalytic effect by $TiO_2$. Finally, the photocatalytic effect increased due to photo-induced-electron absorption effect by ACF and electron trap effect by comodified MnS nanoparticles.

Removal of aqueous heavy metals (Pb, Cu, Zn, Cd) by scoria from Jeju, Korea

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.380-383
    • /
    • 2004
  • Heavy metal release from wastewater is a serious environmental problem, and therefore, various wastewater treatment techniques have been developed. Among the techniques, sorption technique is most attractive. Considerable researches have been recently focused on finding out inexpensive sorbents, especially from various natural materials. In order to evaluate the applicability of the scoria taken from the Jeju Island, Korea to remove heavy metals (Pb, Cu, Zn, Cd) from aqueous solutions, equilibrium sorption experiments were conducted in this study. In equilibrium tests, powdered activated carbon (PAC), one of the most commonly used sorbents, was also tested to compare the effectiveness of the Jeju scoria with that of PAC. The Jeju scoria had larger adsorption capacity and affinity for metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) than PAC. The sorption parameters of the two sorbents were evaluated by using both the Langmuir and Freundlich isotherms, and the sorption data were better fitted to the Freundlich isotherm. In addition, the sorption behavior of metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) onto the scoria displayed a typical characteristic of the cation sorption. The removal of metal ions decreased at a lower pH condition due to competition with hydrogen ions for the sorption sites of Jeju scoria, while the removal increased at a high pH condition due to hydroxide precipitation.

  • PDF

A Study on Adsorption Characteristics of the Heavy Metals using Melting Slag of Incinerator Ash (소각재 용융슬래그를 이용한 중금속 흡착특성에 관한 연구)

  • Yoo, Seung-Chol;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.413-420
    • /
    • 2008
  • In order to utilize cinder melting slag as a filter media to control the quality of early rainwater, its environmental stability was verified by heavy metal elution experiment and improved by pre-treatment. Possibilities of improving its function as an absorbent was considered. Absorption characteristics of melting slag before and after the pre-treatment were analyzed by heavy metal equilibrium and stationary-phase column experiments, which in turn were analyzed by comparison experiment with activated carbon. As a result of heavy metal elution experiment, every metal item existed in a much lower amount than the criteria or was not detected, implying that there is no problem recycling it. Absorption equilibrium experiment showed that the time for pre-treatment melting slag to reach the equilibrium was reduced, while the absorbed amount was greatly increased. Stationary-phase column experiment assures us that the elimination rate was not changed much by influx rate, pH and the change in packing volume rate, indicating that this melting slag can be used not only as a filter media to control the quality of early rainwater but also in many areas of water-processing.

Evaluation of Organics and Inorganics Removal of Physicochemical Pretreatment Processes for Reuse of Metal Industry Wastewater (금속산업폐수의 재이용을 위한 물리화학적 전처리공정의 유기물 및 무기물제거 특성 평가)

  • Ha, Dong-Hwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • Several pretreatment processes such as softening, coagulation and precipitation, activated carbon adsorption, ion-exchange and neutralization processes were studied to remove organics and inorganics for selection of the RO based reusing system of metal industry wastewater. The effects of the hydrophobic/hydrophilic fractions of the organics on DOC removal were tested and used to optimize the combination process. Among various pretreatment processes, softening could reduce 93.4% of hardness and could remove all hydrophobic organics from the effluent of metal industry wastewater. Softening followed by coagulation process could reduce DOC (Dissolved Organic Carbon) from 5.1 mg/L to 1.6 mg/L. In addition, as a result of physiochemical pretreatment to raw wastewater of metal industry, neutralization with NaOH showed an efficient removal of iron and TDS (Total Dissolved Solids) without increase in the hardness.

Heavy Metal Adsorption Characteristics and Produced of Food Waste Activated Carbon (음식물류 폐기물 활성탄의 제조 및 중금속 흡착특성)

  • Lee, Jun-Hee;Lee, Seung-Chul;Ju, Min;Kim, Ji-Hye;Lee, Don-Gil
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1601-1608
    • /
    • 2015
  • This study evaluates heavy metal(Cu and Cr) adsorption characteristics produced from food waste charcoal extracted in an optimal operation condition after analyzing activated charcoal of iodine adsorption and heavy metals that derived from an activation process of carbide by the developed by-products of food waste treatment facility using the methods from previous studies. As experiment apparatus, this study used a tube-shaped high temp furnace. The mixing ratio of by-products of food waste treatment facility, carbide, and activation component($ZnCl_2$) was 1:1. The experiment was proceeded as adjusting the activation temperature from 400 to $800^{\circ}C$ and activation time from 30 to 120 minutes. The optimal activation condition for iodine absorption was 90 minutes at $700^{\circ}C$ and by using the produced food waste charcoal, this study conducted an experiment on absorption of heavy metals (Cu and Cr) as changing pH of artificial wastewater and stirring time. As a result, pH 7 showed the highest heavy metal decontamination ratio and in terms of stirring time, it revealed balance adsorption after 10 minutes. This result can be particularly applied as basic data for recyclability of high concentration organic waste, by-products of food waste treatment facility, as an food waste charcoal.

Physicochemical properties and methane adsorption performance of activated carbon nanofibers with different types of metal oxides

  • Othman, Faten Ermala Che;Yusof, Norhaniza;Hasbullah, Hasrinah;Jaafar, Juhana;Ismail, Ahmad Fauzi;Nasri, Noor Shawal
    • Carbon letters
    • /
    • v.24
    • /
    • pp.82-89
    • /
    • 2017
  • In this study, composite PAN-based ACNFs embedded with MgO and $MnO_2$ were prepared by the electrospinning method. The resultant pristine ACNFs, ACNF/MgO and $ACNF/MnO_2$ were characterized in terms of their morphological changes, SSA, crystallinity and functional group with FESEM-EDX, the BET method, XRD and FTIR analysis, respectively. Results from this study showed that the SSA of the ACNF/MgO composite ($1893m^2g^{-1}$) is significantly higher than that of the pristine ACNFs and $ACNF/MnO_2$ which is 478 and $430m^2g^{-1}$, respectively. FTIR analysis showed peaks of 476 and $547cm^{-1}$, indicating the presence of MgO and $MnO_2$, respectively. The FESEM micrographs analysis showed a smooth but coarser structure in all the ACNFs. Meanwhile, the ACNF/MgO has the smallest fiber diameter ($314.38{\pm}62.42nm$) compared to other ACNFs. The presence of MgO and $MnO_2$ inside the ACNFs was also confirmed with EDX analysis as well as XRD. The adsorption capacities of each ACNF toward $CH_4$ were tested with the volumetric adsorption method in which the ACNF/MgO exhibited the highest $CH_4$ adsorption up to $2.39mmol\;g^{-1}$. Meanwhile, all the ACNF samples followed the pseudo-second order kinetic model with a $R^2$ up to 0.9996.

Development and Evaluation of Impregnated Carbon Systems Against Iodine Vapours

  • Srivastava, Avanish Kumar;Saxena, Amit;Singh, Beer;Srivas, Suresh Kumar
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.274-279
    • /
    • 2007
  • In order to understand the breakthrough behaviour of iodine vapours on impregnated carbon systems, an active carbon, 80 CTC grade, $12{\times}30$ BSS particle size and $1104\;m^2/g$ surface area, was impregnated with metal salts such Cu, Cr, Ag, Mo and Zn, and an organic compound Triethylene diamine (TEDA) to prepare different carbon systems such as whetlerite, whetlerite/TEDA, whetlerite/KI/KOH and ASZMT. The prepared adsorbents along with active carbon were characterized for surface area and pore volume by $N_2$ adsorption at liquid nitrogen temperature. These carbon systems were compared for their CT (concentration X time) values at 12.73 to 53.05 cm/sec space velocities and 2 to 5 cm carbon column bed heights. The carbon column of 5.0 cm bed height and 1.0 cm diameter was found to be providing protection against iodine vapours up to 5.5 h at 3.712 mg/L iodine vapour concentration and 12.73 cm/sec space velocity. The study clearly indicated the adsorption capacities of carbon systems to be directly proportional to their surface area values. Dead layer with all the prepared carbon systems was found to be less than 2.0 cm indicating it to be minimum bed height to have protection against $I_2$ vapours. Effect of carbon bed height and flow rate was also studied. The active carbon showed maximum protection at all bed heights and flow rates in comparison to all other impregnated carbon systems, showing that only physical adsorption is responsible for the removal of iodine vapours.

Evaluation for adsorption of low concentration of indoor $CO_2$ adsorption using zeolite and alkali metal (제올라이트 및 알칼리금속을 이용한 실내용 저농도 $CO_2$ 흡착제의 성능 평가)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Cha, Yu-Joung;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.494-503
    • /
    • 2013
  • In this study, $CO_2$ adsorbent was produced for minimizing energy loss due to ventilation within the building. For improved selectivity about low concentration of $CO_2$ in multiple-use facilities, the ball type adsorbent was modified from a commercial zeolite, alumina, alkali metals and activated carbon with mixing LiOH, binder, and $H_2O$. We measured specific surface area, pore characteristic, and crystal structure of the modified adsorbent. Effects of alkalization on the absorptive properties of the adsorbents were investigated. Continuous column tests (2,000 ppm) and batch chamber tests ($4m^3$, 5,000ppm) showed that the modified adsorbent indicated about the selectivity of $CO_2$ more than 9.7% (0.613 mmol/g) compared with ordinary adsorbents and $CO_2$ removal efficiency of 88.8% within l hour, respectively. It was estimated that the modified adsorbent was applicable to indoor environments.

Recovery of Heavy Metals using Oxidized Undaria pinnatifida in Plating Wastewater

  • Park, Jae-Yeon;Jeon, Chung;Yu, Yeong-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.357-360
    • /
    • 2000
  • Biosorption process is an economic and potential process for metal sequestering from the water. The oxidized Undaria pinnatifida by nitric acid had high uptake capacity for heavy metals of 4 - 6 meq / g dry mass. For the application of oxidized Undaria pinnatifida, recovery of metal in plating wastewater was studied. The uptake capacity of the oxidized Undaria pinnatifida was high compared to the ion exchanger IR-120 plus. The treatment efficiency of chromium and copper in the wastewater was 85% In batch. Activated carbon was used to assist the recovery of water by removing organic matters of the wastewater.

  • PDF

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF