• Title/Summary/Keyword: metal waste forms

Search Result 21, Processing Time 0.02 seconds

Chemical forms of Heavy Metal Elements in Mine Wastes, Stream Sediments and Surrounding Soils from the Gubong Mine, Korea (구봉광산 일대 광미, 하상퇴적물 및 주변 토양에서의 중금속 원소의 존재 형태)

  • 김종옥
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.261-271
    • /
    • 1999
  • Mining activity in the Gubong gold mine started in 1908 and lasted up to recent days. Heavy metals derived from the activity may be porentially toxic to human life and envirinment of this area. Because metal toxicity depends on chemical associations into five operationally defined groups: exchangeable, carbonate, reducible, oxidizable, and residual fractions, and the Most of heavy metals have significant little significance (alomost<1%). And Cu is mainly associated with the oxidizable from. Total concentration of heavy metals, pH, and mineralogy affect the chemical forms of the metals. Heavy metal concentrations. Significant amounts of metal elements (5∼65.1% in Pb, 6.2∼39.7% in Zn, 8.7∼54.7% in Cd, and 3.6∼24.7% in Cu) were present in carbonate form from mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb bearing carbonate mineral) in mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb beraring varbonate mineral) in mine waste support this result. Areas with high corbonate bound from would have higher potentoal conamination, however, because elements of carbonate bound forms are easily mobilized under lower pH conditions in the surface envionments due to acid to rain soil acidification.

  • PDF

Analysis and Characteristics of Heavy Metals in Mines Waste Water (광산폐수 속의 중금속의 분석과 특성)

  • Lee, Kyung-Ho
    • Journal of the Speleological Society of Korea
    • /
    • no.92
    • /
    • pp.9-18
    • /
    • 2009
  • A number of closed metal mines act as point sources of contamination on nearby streams, soils and plants in our country. The contamination of twelve decomposed samples had earned from nine closed metal mines had been evaluated by TEA-3000. The contents of heavy metal with ion fraction exchange and carbonate fraction forms had been showed that the speciation of heavy metals represented with easy solubility, mobility and bioavailable of plants, and in case of sulfide compounds and organic residuals forms are related with the speciation of metals which may be stable forms because of strong bindable capacity. Also heavy metals elements in mosts of mines got with relative stable within crystal lattice, but results of trace element analyser showed that, in the most of tailings from mine areas, large portions of concentration of heavy metals were explained as stable from, sulfides/ organics and residual. In tailing from Imchun mines, the concentrations extracted by water were relatively high as compared with other mine areas whose total concentrations were very high because of large quantities of exchangeable ions and carbonates and low soil pH. Danger Index (D.I.) suggested in this study was based on the cumulative concentrations of step 1 and 2 from the result of trace element analyser. When the soil pH was considered, this index became better indicator to determine the priority for the remediation of mine area.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

Theoretical Considerations on an Electrolytic Reduction Process for Reducing Spent Oxide Fuel

  • Park B. H.;Seo C. S.;Jung K.-J.;Park S. W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.86-91
    • /
    • 2005
  • A metal product obtained from an electrolytic reduction process, possesses less volume and radioactivity than those of the unprocessed spent oxide fuels. The chemical composition of the metal product varies according to the process condition. In this work, a basic study was performed to evaluate the chemical forms of the spent oxide fuel components in an electrolytic reduction process with the operation conditions. One of the most important operation conditions is the cell potential applied for the reduction cell. It is expected that $PU_{2}O_3$ is difficult to reduce even though the cell potential is negative enough to reduce the lithium oxide when the activity of $Li_{2}O$ exceeds 0.003. The reduction of actinide oxides via the reduction of $Li_{2}O$ is assumed to have a greater reduction yield than a direct reduction of the actinide oxides.

  • PDF

Low Temperature Pyrolysis for Valuable Resources Recovery from Waste Wire (I) (폐전선으로부터 유가자원 회수를 위한 저온열분해(I))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • In this study, we investigated the recovery of copper and synthetic fuel from the waste wire by low temperature pyrolysis which can overcome problems of the recent incineration methods. Through thermal decomposition process of waste wire, we achieved the big advantage of getting usable resources as the forms of copper and fuel with a very high value. The TG/DTA and small-scale reaction experiments were carried out to determine an optimum temperature for waste wire pyrolysis. And the pyrolysis was done at 350, 450, and $550^{\circ}C$, respectively, and heating rate of the TG/DTA was $5^{\circ}C/min$ untill $700^{\circ}C$. The result shows that the optimum temperature range for dehydrochlorination of PVC was $280{\sim}350^{\circ}C$, as a lower temperature range than $400{\sim}550^{\circ}C$ of PE and PP. Practically over 95% of copper metal and synthetic fuel, which has the 8027 kcal/kg as a calorific value, were recovered from the waste wire samples.

Fabrication and Characterization of Zr and Hf Containing Vitrified Forms of Radioactive Waste

  • Young Hwan Hwang;Seong-Sik Shin;Sunghoon Hong;Jung-Kwon Son;Cheon-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2024
  • Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions.

Recent Progress in Waste Treatment Technology for Pyroprocessing at KAERI (파이로 공정폐기물 처리기술의 최근 KAERI 연구동향)

  • Park, Geun-Il;Jeon, Min Ku;Choi, Jung-Hoon;Lee, Ki-Rak;Han, Seung Youb;Kim, In Tae;Cho, Yung-Zun;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.279-298
    • /
    • 2019
  • This study comprehensively addresses recent progress at KAERI in waste treatment technology to cope with waste produced by pyroprocessing, which is used to effectively manage spent fuel. The goal of pyroprocessing waste treatment is to reduce final waste volume, fabricate durable waste forms suitable for disposal, and ensure safe packaging and storage. KAERI employs grouping of fission products recovered from process streams and immobilizes them in separate waste forms, resulting in product recycling and waste volume minimization. Novel aspects of KAERI approach include high temperature treatment of spent oxide fuel for the fabrication of feed materials for the oxide reduction process, and fission product concentration or separation from LiCl or LiCl-KCl salt streams for salt recycling and higher fission-product loading in the final waste form. Based on laboratory-scale tests, an engineering-scale process test is in progress to obtain information on the performance of scale-up processes at KAERI.

Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions (합성무기복합체 조성변화에 따른 모의 LiCl 염폐기물의 탈염소화/고형화)

  • Kim, Na-Young;Cho, In Hak;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.211-221
    • /
    • 2016
  • Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP ($SiO_2-Al_2O_3-P_2O_5$). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding $B_2O_3$ and $Fe_2O_3$ to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of $Al_2O_3$ or $B_2O_3$ as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

The Corrosion Properties of Zr-Cr-NM Alloy Metallic Waste Form for Long-term Disposal (Zr-Cr-NM 금속폐기물고화체 합금의 장기처분을 위한 부식특성)

  • Han, Seungyoub;Jang, Seon Ah;Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Ki Rak;Park, Hwan Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • KAERI is conducting research on spent cladding hulls and additive metals to generate a solidification host matrix for the noble metal fission product waste in anode sludge from the electro-refining process to minimize the volume of waste that needs to be disposed of. In this study, alloy compositions Zr-17Cr, Zr-22Cr, and Zr-27Cr were prepared with or without eight noble metals representing fuel waste using induction melting. The microstructures of the resulting alloys were characterized and electrochemical corrosion tests were conducted to evaluate their corrosion characteristics. All the compositions had better corrosion characteristics than other Zr-based alloys that were evaluated for comparison. Analysis of the leach solution after the corrosion test of the Zr-22Cr-8NM specimen indicated that the noble metals were not leached during corrosion under 500 mV imposed voltage, which simulates a highly oxidizing disposal environment. The results of this study confirm that Zr-Cr based compositions will likely serve as chemically stable waste forms.

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.