Low Temperature Pyrolysis for Valuable Resources Recovery from Waste Wire (I)

폐전선으로부터 유가자원 회수를 위한 저온열분해(I)

  • Han, Seong-Kuk (Department of Environmental Engineering, Chungbuk University) ;
  • Kim, Jae-Yong (Department of Environmental Engineering, Chungbuk University)
  • Received : 2009.02.24
  • Accepted : 2009.03.09
  • Published : 2009.04.10

Abstract

In this study, we investigated the recovery of copper and synthetic fuel from the waste wire by low temperature pyrolysis which can overcome problems of the recent incineration methods. Through thermal decomposition process of waste wire, we achieved the big advantage of getting usable resources as the forms of copper and fuel with a very high value. The TG/DTA and small-scale reaction experiments were carried out to determine an optimum temperature for waste wire pyrolysis. And the pyrolysis was done at 350, 450, and $550^{\circ}C$, respectively, and heating rate of the TG/DTA was $5^{\circ}C/min$ untill $700^{\circ}C$. The result shows that the optimum temperature range for dehydrochlorination of PVC was $280{\sim}350^{\circ}C$, as a lower temperature range than $400{\sim}550^{\circ}C$ of PE and PP. Practically over 95% of copper metal and synthetic fuel, which has the 8027 kcal/kg as a calorific value, were recovered from the waste wire samples.

본 연구에서는 기존 소각방법의 단점을 보완할 수 있는 열분해를 통해 폐전선을 처리하고 부가적으로 생성되는 구리 및 합성연료유의 회수를 그 목적으로 하고 있다. 폐전선의 열분해 공정을 거쳐 구리를 회수하고 쉽게 오일로 분해될 뿐 아니라 오일의 유용성이 매우 크기 때문에 아주 고가의 유효자원을 회수할 수 있다. 폐전선 열분해를 위한 최적 온도를 결정하기 위하여 350, 450, $550^{\circ}C$에서 열분해를 실행하였다. $700^{\circ}C$까지 TG/DTA를 실행하였으며 온도상승률은 분당 $5^{\circ}C$로 하였다. 그 결과 PVC의 염화수소제거를 위한 최적 온도 범위가 PE나 PP보다 낮은 영역인 $280{\sim}350^{\circ}C$임을 보였다. 실질적으로 폐전선으로부터 95% 이상의 구리금속과 발열량이 8027 kcal/kg인 합성연료유를 회수할 수 있었다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. R. B. Dean, Incineration of Municipal Waste, Academic Press, London (1993)
  2. R. C. Flagan and J. H. Seinfeld, Fundamental of Air Pollution Engineering, Prentice Hall, New Jersey (1988)
  3. A. G. Buekens and J. G. Schoters, J. of C & R., 9, 253 (1986)
  4. J. Leidner, Plastics Waste Recovery of Economic Value, Marcel Dekker, New York (1981)
  5. W. M. Shaub and W. Tsang, Environ Sci Technol, 17, 721 (1983) https://doi.org/10.1021/es00118a007
  6. N. J. Jung, J. of KSWM, 3, 15 (1986)
  7. H. J. Yu, Ph. D. Dissertation, Chungbuk National University, Cheong-ju, Korea (2003)
  8. W. Kaminsky, C. Simon, and B. Schlesslmann, J. of AAP, 58, 117 (2001)