• Title/Summary/Keyword: metal sheets

Search Result 343, Processing Time 0.026 seconds

Fabrication and Properties of MFSFET′s using LiNbO$_3$ film (LiNbO$_3$를 이용한 MFSFET의 제작 및 특성)

  • 정순원;김채규;이상우;김광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.63-66
    • /
    • 1998
  • Prototype MFSFET′s using ferroelectric oxide LiNbO$_3$ as a gate insulator have been successfully fabricated with the help of 2 sheets of metal masks and demonstrated nonvolatile memory operations of the MFSFET′s. The estimated field-effect electron mobility and transconductance on a linear region of the fabricated FET were 600 $\textrm{cm}^2$/V.s and 0.16 mS/mm, respectively. The drain current of the "on" state was more than 4 orders of magnitude larger than the "off" state current at the same "read" gate voltage of 0.5 V, which means the memory operation of the MFSFET. A write voltage as low as $\pm$3 V, which is applicable to low power integrate circuits, was used for polarization reversal.

  • PDF

The Characteristics of Thermal Hydraulic Performance for Micro Plate Heat Exchanger with Straight channel (직관채널의 마이크로 판형열교환기 열적 성능 특성)

  • Kim, Yoon-Ho;Lee, Kyu-Jung;Seo, Jang-Won;Jeon, Seung-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.767-774
    • /
    • 2008
  • This paper presented the heat transfer and pressure drop characteristics for micro plate heat exchanger with straight channel. The metal sheets for straight channel are manufactured by chemical etching and fabricated micro plate heat exchangers by using the vacuum brazing of bonding technology. The performance experiments are performed within the Reynolds numbers range of 15$\sim$250 under the same flow rate conditions for hot and cold sides. The inlet temperature of hot and cold water are conducted in the range of $30^{\circ}C{\sim}50^{\circ}C$ and $15^{\circ}C{\sim}25^{\circ}C$, respectively. Heat transfer rate and pressure drop are evaluated by the Reynolds numbers and mass flow rates as the inlet temperature variations of the hot and cold sides. Correlations of Nusselt number and friction factor are suggested for micro plate heat exchanger with straight channel using the results of performance experiment.

Prediction of the Formability Enhancement from Electromagnetic Forming due to Interaction between Tool and Blank Sheet (전자기 성형시 금형과 소재의 접촉에 따른 성형성 개선 예측)

  • Lee, Y.H.;Kim, H.K.;Noh, H.G.;An, W.J.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.199-204
    • /
    • 2015
  • Electromagnetic Forming is a high speed forming technology which uses electromagnetic (Lorentz’s) forces to shape sheet metal parts. In the current study the effect of the tool-sheet interaction during electromagnetic forming on formability enhancement is investigated using FEM. The decrease in void volume fraction by having the sheet contact with die helps to improve formability. The main purpose of the current study was to predict improvement of formed sheets whether the sheet contacts or does not contact the die under experimental conditions and 3-D finite element analysis. The results show that fractures caused by the voids in the forming sheet appear only in some specific cases and the bulge height of the conical shape was shorter than the height with a free bulge. For the same height conditions, however, the formability was improved for the conical-shaped die when there is sheet contact with the die.

Laser Welding Characteristics of Aluminum and Copper Sheets for Lithium-ion Batteries (자동차 이차전지 제조를 위한 알루미늄과 무산소동의 레이저 용접특성)

  • Kang, Minjung;Park, Taesoon;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.58-64
    • /
    • 2013
  • Several joining methods involving resistance welding, laser welding, ultrasonic welding and mechanical joining are currently applied in manufacturing lithium-ion batteries. Cu and Al alloys are used for tab and bus bar materials, and laser welding characteristics for these alloys were investigated with similar and dissimilar material combinations in this study. The base materials used were Al 1050 and oxygen-free Cu 1020P alloys, and a disk laser was used with a continuous wave mode. In bead-on-plate welding of both alloys, the joint strength was higher than the strength of O tempered base material. In overlap welding, the effect of welding parameters on the tensile shear strength and bead shape was evaluated. Tensile shear strength of overlap welded joint was affected by interfacial bead width and weld defect formation. The tensile-shear specimen was fractured at the heat affected zone by selecting proper laser welding parameters.

Effect of Primer Coating Condition and Gap Clearance in $CO_2$ Laser Welding of Primer-coated Steel for Shipbuilding (조선용 프라이머 코팅강판의 $CO_2$ 레이저 용접에 있어서 프라이머 코팅 조건과 갭(Gap) 간극의 영향)

  • 길병래;장지연;김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.109-115
    • /
    • 2004
  • The spatter and porosity could be occurred during$CO_2$CW laser welding of Primer- coated steel for shipbuilding. This study has suggested an alternative idea by examining of weld-defect formation mechanism. The primer-coated plate induced the spatter humping bead and porosity and these are main part of the welding defect. attributed to the powerful vaporizing pressure of primer attached on the base metal The zinc of Primer has a boiling point that is the lower temperature than melting point of steel zinc vapor will build up at the interface between the two sheets and this tends to deteriorate the quality of the weld by ejecting weld material from lap position or leaving porosity. Therefore introducing a small gap clearance in the lap position. the zinc vapor could escape through it and sound weld beads can be acquired. In conclusion, we suggested the occurred and prevented mechanism of weld defects with searching the factor.

Pulsed laser welding of Zr-1%Nb alloy

  • Elkin, Maxim A.;Kiselev, Alexey S.;Slobodyan, Mikhail S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.776-783
    • /
    • 2019
  • Laser welding is usually a more effective method than electron-beam one since a vacuum chamber is not required. It is important for joining Zr-1%Nb (E110) alloy in a manufacturing process of nuclear fuel rods. In the present work, effect of energy parameters of pulsed laser welding on properties of butt joints of sheets with a thickness of 0.5 mm is investigated. The most efficient combination has been found (8-11 J pulse energy, 10-14 ms pulse duration, 780-810 W peak pulse power, 3 Hz pulse frequency, 1.12 mm/s welding speed). The results show that ultimate strength under static loading can not be used as a quality criterion for zirconium alloys welds. Increased shielding gas flow rate does not allow to protect weld metal totally and contributes to defect formation without using special nozzles. Several types of imperfections of the welds have been found, but the major problem is branching microcracks on the surface of the welds. It is difficult to identify the cause of their appearance without additional research on improving the welding zone protection (gas composition and flow rate as well as nozzle configuration) and studying the hydrogen content in the welds.

A Study on Clinching Characteristics for A6451 Aluminum and Galvanized Steels and the Application of Clinching Technology to Automotive Parts (A6451 알루미늄 및 용융아연도금강판의 클린칭 접합특성 및 접합기술의 차체 부품 적용 연구)

  • Kwon, Eui-Pyo;Park, Hyun-kyung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.886-893
    • /
    • 2018
  • In this study, clinching characteristics of aluminum and galvanized steels were investigated for the application of clinching as a joining technique to aluminum wheelhouse assembly. A6451 aluminium alloy and galvanized steel sheets were joined by hybrid joining(clinching + adhesive bonding). Tensile-shear load and fracture mode of hybrid joints were investigated. Maximum tensile-shear load of hybrid joints was about six times higher than that of clinched joints without adhesive. Energy absorption values of hybrid joints were higher than those of clinched joints without adhesive as well as resistance spot welded steel joints. Developed aluminum wheelhouse assembly showed higher static stiffness than the existing steel parts. Aluminum wheelhouse inner panel unit was 44% lighter than the steel unit, and the final assembled aluminum wheelhouse was 14.6% lighter than the existing steel parts.

Thermal frequency analysis of FG sandwich structure under variable temperature loading

  • Sahoo, Brundaban;Mehar, Kulmani;Sahoo, Bamadev;Sharma, Nitin;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.57-74
    • /
    • 2021
  • The thermal eigenvalue responses of the graded sandwich shell structure are evaluated numerically under the variable thermal loadings considering the temperature-dependent properties. The polynomial type rule-based sandwich panel model is derived using higher-order type kinematics considering the shear deformation in the framework of the equivalent single-layer theory. The frequency values are computed through an own home-made computer code (MATLAB environment) prepared using the finite element type higher-order formulation. The sandwich face-sheets and the metal core are discretized via isoparametric quadrilateral Lagrangian element. The model convergence is checked by solving the similar type published numerical examples in the open domain and extended for the comparison of natural frequencies to have the final confirmation of the model accuracy. Also, the influence of each variable structural parameter, i.e. the curvature ratios, core-face thickness ratios, end-support conditions, the power-law indices and sandwich types (symmetrical and unsymmetrical) on the thermal frequencies of FG sandwich curved shell panel model. The solutions are helping to bring out the necessary influence of one or more parameters on the frequencies. The effects of individual and the combined parameters as well as the temperature profiles (uniform, linear and nonlinear) are examined through several numerical examples, which affect the structural strength/stiffness values. The present study may help in designing the future graded structures which are under the influence of the variable temperature loading.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

COMPARISON FOR THE RETENTION OF CASTING CROWN AND CEMENT THICKNESS FOLLOWING VARIOUS CEMENTS (수종의 세멘트에 따른 주조금관의 유지력 및 세멘트 두께의 비교)

  • Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.37-46
    • /
    • 1994
  • The purpose of this study was to evaluate the effect of various cements on the retention of casting crown and the cement film thickness. To evaluate the retention of crown, thirty maxillary premolars were used and prepared to largely same dimension. According to the routine method, Non-precious metal crowns were made. The teeth and the metal crowns were divided into three groups and cemented under 5kg static pressure. Group I was composed of 10 teeth and 10 metal crowns and was cemented with zinc phohsphste cement. Group II was composed of 10 teeth and 10 metal crowns and was cemented with Panavia-EX cement. Group III was composed of 10 teeth and 10 metal crowns and was cemented with All-Bond & composite resin cement. After 5 days, the cemented specimens were mounted and the failure loads were measured by an Instron Universal Testing Machine. To evaluate the cement film thickness. 5 metal teeth and 5metal crowns from a prepared maxillary premolar were made. Two marks were flawed on the margin part of each surface at 4-surfaces of each specimen(one mark : crown, the other : metal tooth) and were measured the width with SEM photograph(80 sheets) before and after cementation(Panavia-EX, All-Bond cement, & ZPC) was made. Differences of the widths of marks between before and after were measured, and differences from 4-surfaces of a specimen cemented with a cement were measured and calculated. The results were as follows ; 1. There was a statistically significant difference between the failure loads of group III and the others(p<0.05). 2. There was a statistically significant difference between the cement film thickness of group III and the others(p<0.05).

  • PDF