• Title/Summary/Keyword: metal plating

Search Result 334, Processing Time 0.025 seconds

PA study on selective emitter structure and Ni/Cu plating metallization for high efficiency crystalline silicon solar cells (결정질 실리콘 태양전지의 고효율 화를 위한 Selective emitter 구조 및 Ni/Cu plating 전극 구조 적용에 관한 연구)

  • Kim, Minjeong;Lee, Jaedoo;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.2-91.2
    • /
    • 2010
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. The better performance of Ni/Cu contacts is attributed to the reduced series resistance due to better contact conductivity of Ni with Si and subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading combined with the lower resistance of a metal silicide contact and improved conductivity of plated deposit. This improves the FF as the series resistance is deduced. This is very much required in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. This paper using selective emitter structure technique, fabricated Ni/Cu plating metallization cell with a cell efficiency of 17.19%.

  • PDF

Recovery of High Purity Tin from Waste Solution of the Tin Plating by Ion-exchange and Cyclone-electrowinning (주석도금폐액으로부터 이온교환 및 사이클론 전해채취를 이용한 고순도 주석의 회수)

  • Kang, Yong-Ho;Shin, Gi-Wung;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.42-48
    • /
    • 2016
  • A research for the recovery of the metal with high purity from the waste tin plating solution was carried out. First, tin plating waste solution was tested to remove the organic substances and metallic impurities such as Fe, Zn, Na etc. using ion exchange resin having iminodiacetic functional groups (Lewatit TP 207). Second, the tin solution was purified to obtain the high purity tin solution using ion exchange resin having ethylhexyl-phosphate functional groups (Lewatit VPOC 1026). Finally, 99.98% of the high purity of tin metal can be recovered from the purified solution by cyclone type electrowinning method.

Preparation of Water Soluble Chitosan Blendmers and Their Application to Removal of Heavy Metal ions from Wastewater

  • Seo, Sang-Bong;Toshio Kajiuchi;Kim, Dae-In;Lee, Soon-Hong;Kim, Hak-Kil
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • High purity water soluble chitosans (WsCs) were employed as a flocculant to remove heavy metal ions from wastewater of industrial plating wastewater treatment complex. Their weight average molecular weights and polydispersities were 272,000~620,000 g/mol and 1.4~1.9 range, respectively and were readily soluble in water in the pH range of 3~11. Heavy metal ions such as chromium, iron and copper were removed well by WsCs. When WsCs was blended with either sodium N, N-diethyldithiocarbamate trihydrate (SDDC$_{T}$) or sodium salicylate (SSc), the removal efficiency was further increased primarily due to the excess amount of hydrophilic sulfonic and carboxylic groups. Especially, in the case of WsCs-SSc the remaining chromium and copper concentrations were 0.1 mg/L and 9.5 mg/L, which are 1/15 and 1/3 compared with that of pure WsCs, respectively. The former is within the acceptable limit, but the latter is not. Therefore, the effective copper flocculant remains to be studied.d.

Study of Ni/Cu Front Metal Contact Applying Selective Emitter Silicon Solar Cells (선택도핑을 적용한 Ni/Cu 전면 전극 실리콘 태양전지에 관한 연구)

  • Lee, JaeDoo;Kwon, Hyukyong;Lee, SooHong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.905-909
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surfaces. One of the available front metal contacts is Ni/Cu plating, which can be mass produced via asimple and inexpensive process. A selective emitter, meanwhile, involves two different doping levels, with higher doping (${\leq}30{\Omega}/sq$) underneath the grid to achieve good ohmic contact and low doping between the grid in order to minimize the heavy doping effect in the emitter. This study describes the formation of a selective emitter and a nickel silicide seed layer for the front metallization of silicon cells. The contacts were thickened by a plated Ni/Cu two-step metallization process on front contacts. The experimental results showed that the Ni layer via SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray spectroscopy) analyses. Finally, a plated Ni/Cu contact solar cell displayed efficiency of 18.10% on a $2{\times}2cm^2$, Cz wafer.

Thermal Properties of Diamond Aligned Electroless Ni Plating Layer/Oxygen Free Cu Substrates (다이아몬드 배열 무전해 니켈 도금층/무산소동 기판의 열전도도 특성)

  • Jeong, Da-Woon;Kim, Song-Yi;Park, Kyoung-Tae;Seo, Seok-Jun;Kim, Taek Soo;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.134-137
    • /
    • 2015
  • The monolayer engineering diamond particles are aligned on the oxygen free Cu plates with electroless Ni plating layer. The mean diamond particle sizes of 15, 23 and $50{\mu}m$ are used as thermal conductivity pathway for fabricating metal/carbon multi-layer composite material systems. Interconnected void structure of irregular shaped diamond particles allow dense electroless Ni plating layer on Cu plate and fixing them with 37-43% Ni thickness of their mean diameter. The thermal conductivity decrease with increasing measurement temperature up to $150^{\circ}C$ in all diamond size conditions. When the diamond particle size is increased from $15{\mu}m$ to $50{\mu}m$ (Max. 304 W/mK at room temperature) tended to increase thermal conductivity, because the volume fraction of diamond is increased inside plating layer.

A Study of Optimization of Electrodeposited CuSnZn Alloys Electrolyte and Process

  • Hur, Jin-Young;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.64-72
    • /
    • 2010
  • CuSnZn electroplating was investigated as alternative to Ni plating. Evaluation of electrolyte and plating process was performed to control physical characteristics of the film, and to collect practical data for application. Hull-cell test was conducted for basic comparison of two commercialized products and developed product. Based on hull-cell test results, long term test of three electrolytes was performed. Various analysis on long term tested electrolyte and samples have been done. Reliable and practical data was collected using FE-SEM (FEI, Sirion), EDX (ThermoNoran SIX-200E), ICP Spectrometer (GBC Scientifi c, Integra XL), FIB (FEI, Nova600) for anlysis. Physical analysis and reliability test of the long term tested film were also carried out. Through this investigation plating time, plating speed, electrolyte composition, electrolyte metal consumption, hardness and corrosion resistance has been compared. This set of data is used to predict and control the chemical composition of the film and modify the physical characteristics of the CuSnZn alloy.

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

A study of fabricating catalyst free copper plating layer using electroless copper plating solution (무전해 구리 도금액을 이용한 무촉매 구리 도금층 형성에 관한 연구)

  • Heo, Jin-Yeong;Lee, Hong-Gi;Im, Yeong-Saeng
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.133-134
    • /
    • 2013
  • 본 연구는 비전도성 소재 상에 무전해 동도금(Electroless Copper)시 수행되는 씨앗층이나 촉매공정 없이 직접 구리 석출물을 얻는 방법 중 하나에 관한 연구이다. 실리콘 웨이퍼상에 확산방지를 위한 Ta 금속확산방지(Metal barrier)막층 형성 후 무전해 동도금에 침지 후 최소한의 전류를 인가한 결과 균일한 구리피막을 얻을 수 있었으며, 표면 및 단면 조직 분석결과 이를 확인할 수 있었다.

  • PDF

방열기판 전극형성 기술 동향

  • Kim, Dan-Bi;Kim, Ji-Won;Eom, Nu-Si-A;Im, Jae-Hong
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2018
  • There is close relation between the heat generation and the performance of electronic device. The durability and efficiency of the device are degraded due to heat generation. It is necessary to release the generated heat from an electronic device. Based on demands of the printed circuit board (PCB) manufacturing, the robust and reliable plating technique of PCB is necessary. In this study, we review various methods for improving the heat sink property. These methods were considered to enhance the adhesion between ceramic substrate as heat sink and metal layer as electrode.

The Frictional Resistance Of Tin Ion-Plated Co-Cr Orthodontic Wire (TiN 피막처리된 Co-Cr계 교정용 선재의 마찰저항력)

  • Lee, Ho-Kyu;Kwon, Oh-Won;Kim, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.123-133
    • /
    • 1998
  • The effectiveness of TiN ion-plating was examined with TiN ion-plated Co-Cr wires(.016“, .016”x.022“) on three different types of bracket(TiN ion-plated metal bracket ceramic bracket and plastic bracket). Maximum static frictional forces and characteristic curves obtained from the frictional characteristic graph, were compared and surface roughness of wires and bracket slots before and after friction experiment was observed by SEM. The obtained results were as follows $\cdot$The frictional forces of TiN ion-plated wires were significantly lower than those of non ion-plated wires(p<0.05). $\cdot$On the effect of wire shape, the frictional forces of round wires were significantly lower than those of rectangular wires(p<0.05) $\cdot$As the result of the SEM observation on the wires and bracket slots after the friction experiment the surface of non ion-plated wires was rougher than that of TiN ion-plated ones. $\cdot$The difference between the static frictional forces and the kinetic frictional forces was not significant in case of the TiN ion-plated round ins, but the static frictional forces were a little higher than the kinetic frictional forces in the TiN ion-plated rectangular wires. $\cdot$The static frictional forces were much higher than the kinetic frictional forces in the case of non ion-plated wires.

  • PDF