• Title/Summary/Keyword: metal mold

검색결과 561건 처리시간 0.019초

HSS강판 판재성형 시 스프링백 최소화를 위한 드로우 비드 최적 설계 (Bead Optimization to Reduce Springback of Sheet Metal Forming using High Strength Steel)

  • 홍석무;황지훈
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.350-354
    • /
    • 2014
  • Recently, high strength steel (HSS) sheet metal has been widely used to improve lightweight structures in the automotive industry. Because HSS sheets have high strength but low elongation, it is difficult both to make products with complex shapes and to control excessive springback. In order to reduce the springback after forming using HSS, draw beads were introduced in this study. The design variables, including the draw-bead positions and shapes, were optimized using a finite element analysis. A mold for a scanner support, which is part of an A3 printer, was designed using the proposed method and then utilized. The results from a finite element simulation and optimization were compared with the experiment results.

딤플형 내부구조재를 갖는 접합판재의 굽힘 특성연구 (A Study on The Bending Characteristic of Sandwich Sheet Metal with Dimple Type-Inner-Structure)

  • 김흥근;오솔길;유정수;성대용;정완진;김종호
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.31-34
    • /
    • 2008
  • The L-bending of inner-structure bonded sandwich sheet metal is examined to reduce springback and defects of bent parts. The specimen is composed of top and bottom layers and a middle layer with dimple type-inner-structure and each layer is bonded by resistance welding. This specimen with hollow type-inner-structure shows different bending characteristics from the conventional sandwich sheet metals with solid type-inner-structure. The experiments were conducted for two kinds of working conditions, that is, clearance and movement of first bent specimen for second bending. The deformed profile, bend angle and springback were investigated and compared and then the proper working conditions for L-bending of sandwich sheet metal were prosed.

  • PDF

탕류 및 응고 해석을 통한 자동차 Gear Housing의 다이캐스팅 주조공정 설계 (Die Casting Process Design of Automobile Gear Housing by Metal Flow and Solidification Simulation)

  • 박진영;김억수;박익민
    • 한국주조공학회지
    • /
    • 제24권6호
    • /
    • pp.347-355
    • /
    • 2004
  • In the die casting process, the flow of liquid metal has significant influence on the quality of casting products and die life. For the optimal process design of automobile gear housing, various analyses were performed in this study by using computer simulation code, MAGMAsoft. The simulation has been focused on the molten metal behaviors during the mold filling and solidification stages for the sound casting products. Also the internal defects were predicted by application of air pressure and feeding criteria.

탄소나노튜브 강화 SKD11 냉간금형용 하이브리드 탄소나노소결체 제조 및 특성 평가 (Fabrication and Characteristic Evaluation of Hybrid Carbon Nanotubes Reinforced SKD11 Cold Work Tool Steel)

  • 정성실;문제세;이대열;윤국태;박춘달;송재선
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.291-296
    • /
    • 2013
  • SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. The CNTs was good additives to improve the mechanical properties of metal. In this study, 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. The SKD11+ CNT hybrid nanocomposites were investigated by FE-SEM, particle size distribution, hardness and wear resistance. The CNT was well dispersed in the SKD11 matrix and the mechanical properties of the composite were improved by CNTs addition. It shows good feasibility as cold work die tool.

주철금형주조용 도형재의 적용성 평가 (Evaluation on the Applicability of Refractory Coatings to Metal Mold for Cast Iron)

  • 서금희;김기영;문병문
    • 한국주조공학회지
    • /
    • 제32권3호
    • /
    • pp.144-149
    • /
    • 2012
  • A series of refractory mold coatings were applied to cast iron specimens, and their resistances to wear and spalling were investigated. Tests were carried out with own made measures, and also a calculation was tried for the comparison of a part of results like spalling. Worn width by scrubbing the indenter on the coating layer increased significantly at high temperature. Temperature increasing rate across the specimen when the coating side was exposed to $1000^{\circ}C$ was in the range of $14.5{\sim}75.8^{\circ}C$/sec mm, and specimens with thicker coating layer showed lower temperature increase. Severe spalling of coated layer was observed after heating the specimen, and it was able to confirm by calculation using a commercial code.

PEI계 복합 재료를 이용한 탄자 운반체의 사출 성형 기술 개발에 관한 연구 (Development of Injection Moulding Method of Sabot using Polyetherimide Composite Material)

  • 정태형;이범재;하영욱;이성계
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.269-274
    • /
    • 2001
  • This research covers the development of new technique for composite injection molding of high stiffness Sabot. An analysis of polymer resin is performed by means of making test specimen mold and doing test with accordance of ASTM test guidelines. Structural analysis and simulation of injection molding process are carried out in order not only to estimate but also to predict the characteristics of molding stresses what both product and structure of mold may have. For structural analysis software, Moldflow and LS-dyna are used and universal test machine is utilized for evaluating performance of sabot. Cases of adopting this material to sabot are not announced yet in domestic academic world. In addition to that, materials for polymer-metal mixed injection molding are imported on the whole due to deficient level of domestic technology. Therefore, this new developed injection molding technique using PEI material can make it available to ensure the technology of making mold, injection and design. Finally, this technique may be applicable to another sabot having different radius of warheads from now on.

  • PDF

고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성 (Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding)

  • 여기호;박은수;이한찬
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

사출성형의 냉각 파라미터가 플라스틱 롤러의 수축에 미치는 영향 (The effect of injection molding cooling parameters on shrinkage of plastic roller)

  • 조성기;한성렬
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.8-13
    • /
    • 2021
  • A plastic roller for opening and closing the safety door of the injection molding machine was molded. The dimensional change of the measurement position of the roller was studied when the cooling time was applied differently among the molding conditions, and when the temperature of the coolant applied for mold cooling was also applied differently. Cooling times of 300 seconds and 400 seconds, hot and low-temperature coolant were applied. When the low-temperature coolant was applied, the measuring point of the roller shrank by 0.03 mm. However, when the high-temperature coolant was applied, the measuring point shrank by 0.3 mm. It was found that the application of low-temperature coolant among coolants was more suitable for the reference dimension of the molded article compared to the application of high-temperature coolant. Among the cooling water applied for the molding of plastic rollers, when high-temperature coolant is applied, the shrinkage rate measured immediately after ejection was smaller than when low-temperature coolant is applied. However, it was found that post shrinkage, which occurs over time, occurs much larger when high-temperature coolant is applied.

단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교 (Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool)

  • 최환진;전은채;최두선;제태진;강명창
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

Impact of Copper Densities of Substrate Layers on the Warpage of IC Packages

  • Gu, SeonMo;Ahn, Billy;Chae, MyoungSu;Chow, Seng Guan;Kim, Gwang;Ouyang, Eric
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.59-63
    • /
    • 2013
  • In this paper, the impact of the copper densities of substrate layers on IC package warpage is studied experimentally and numerically. The substrate strips used in this study contained two metal layers, with the metal densities and patterns of these two layers varied to determine their impacts. Eight legs of substrate strips were prepared. Leg 1 to leg 5 were prepared with a HD (high density) type of strip and leg 6 to leg 8 were prepared with UHD (ultra high density) type of strip. The top copper metal layer was designed to feature meshed patterns and the bottom copper layer was designed to feature circular patterns. In order to consider the process factors, the warpage of the substrate bottom was measured step by step with the following manufacturing process: (a) bare substrate, (b) die attach, (c) applying mold compound (d) and post reflow. Furthermore, after the post reflow step, the substrate strips were diced to obtain unit packages and the warpage of the unit packages was measured to check the warpage trends and differences. The experimental results showed that the warpage trend is related to the copper densities. In addition to the experiments, a Finite Element Modeling (FEM) was used to simulate the warpage. The nonlinear material properties of mold compound, die attach, solder mask, and substrate core were included in the simulation. Through experiment and simulation, some observations were concluded.