• Title/Summary/Keyword: metal mold

검색결과 561건 처리시간 0.021초

고경도 금형강의 진동 가공에 대한 연구 (A study on the vibration cutting of high-hardness mold steel)

  • 김종수
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.39-43
    • /
    • 2022
  • In this study, we designed an vibration cutting tool that can achieve improvements such as low cutting force, interrupted chip evacuation and better surface quality of cutting performance to obtain high-quality surface roughness and improvement of tool wear, which is an issue in the machining of high-hardness mold steel. Among the resonance frequency modes of the vibration cutting tool, the bending mode was used to maximize the driving amplitude of the vibration tool tip, and the resonance frequency was confirmed through the finite element method. After measuring the actual resonant frequency of the designed tool using an optical fiber sensor, the cutting force and machining surface of vibration cutting and conventional cutting were compared and analyzed in the turning process of high hardness mold steel (STAVAX). As a result of the experiment, the cutting force was reduced by about 20 % compared to the conventional cutting process, and the surface roughness was also improved by about 60 %. This study suggested that the tool wear and surface quality of high-hardness steel can be improved through the vibration cutting method in the machining of high hardness mold steel.

알루미늄 합금의 소실모형주조 시 유동도에 미치는 주조 조건의 영향 (The Effect of Casting Conditions on the Fluidity during Lost Foam Casting of Al Alloy)

  • 신승렬;한상원;이경환;이진형
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.34-39
    • /
    • 2004
  • The effects of casting condition and hot melt glue during Lost Foam Casting were investigated on the fluidity of Al alloy melt. The fluidity increased linearly with increasing pouring temperature in thick castings but non-linearly in thin casting due to the difference in main heat flow direction. The metal flow velocity was in range of $0.5{\sim}2.7$ cm/s in no evacuation condition and the minimum value of it was measured after the melt flow through the hot melt barrier. The mold evacuation improved the metal flow velocity by around $0.5{\sim}1$ cm/s. And the reaction zone layer thickness was about 1 cm in no-evacuation conditions but about 0.6 cm in mold evacuation condition of 710 torr due to the easier removal of pyrolsis product of EPS. And hot melt barrier thickness of 0.6 mm increased the reaction zone layer thickness up to about 2.5 cm. The fluidity decreased remarkably with an enlarged thickness of hot melt due to a lot of pyrolysis products.

박판 플라스틱 부품의 Outsert Molding 기술에 대한 연구 (A Study of Outsell Molding Technology for Thin-walled Plastic Part)

  • 이성희;고영배;이종원
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.177-182
    • /
    • 2009
  • A work of thin-walled outsell injection molding technology for a plastic part of moldframe applicable in a display product was performed in the present study. The thin-walled plastic part is one of the core parts in the display product, which supports and protects a light guide plate and back light unit from external environmental conditions. It globally has the shape of rectangular and surrounds the light guide plate and back light unit for each class of inch, however, the cross section of the part is not clear to define the thickness. This causes the difficult problem of injection molding itself for the part. Moreover, a metal outsell part makes a difficult problem in injection molding over it. Because the mold temperature control of the parts are not uniform in thickness direction due to the metal part. A careful injection melding analysis and injection mold design from the analysis results have to be proceeded to obtain a production of precision moldframe. Therefore, optimization for injection molding process and analysis of warpage characteristics were studied. Consequently, it was possible from the presented virtual manufacturing process that the manufacturing of precision thin-walled outsell moldframe.

Cut Cell을 고려하는 주조유동 해석 방법 (NUMERICAL METHOD FOR MOLTEN METAL FLOW SIMULATION WITH CUT CELL)

  • 최영심;홍준호;황호영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.518-522
    • /
    • 2011
  • Cartesian grid system has mainly been used in the casting simulation even though it does not nicely represent sloped and curved surfaces. These distorted boundaries cause several problems. A special treatment is necessary to clear these problems. A cut cell method on Cartesian grids has been developed to simulate three-dimensional mold filling Cut cells at a cast-mold interface are generated on Cartesian grids. Governing equations were computed using volume and areas of cast at cut cells. In this paper, we propose a new method that can consider the cutting cells which are cut by casting and mold based on the patial cell treatment (PCT). This method provides a better representation of geometry surface and will be used in the computation of velocities that are defined on the cell boundaries in the Cartesian gird system. Various test examples for several casting process were computed and validated. The analysis results of more accurate fluid flow pattern and less momentum loss owing to the stepped boundaries in the Cartesian grid system were confirmed. We can know the momentum energy at the cut cell is conserved by using the cut cell method. By using the cut cell method. performance of computation gets better because of reducing the whole number of meshes.

  • PDF

머시닝센터를 활용한 알루미늄합금의 마찰교반용접 특성 분석 (Analysis of friction stir welding characteristics of aluminum alloy using machining center)

  • 승영춘;박경도;이춘규
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.46-51
    • /
    • 2020
  • The purpose of this study was to analyze the change in tensile strength characteristics of the weld when the welding speed and rotational speed of the tool, which are representative variables of the friction stir welding process. The equipment used in the experiment was Machining Center No. 5. The material used in the experiment is an AA6061-T6 alloy, and a rolled plate with a thickness of 2mm was used. Two experimental variables were selected, the welding speed of the tool and the rotational speed of the tool. The experimental conditions were selected in the range in which a healthy weld could be obtained through a preliminary experiment. The welding speed of the tool was increased to 100mm/min, 200mm/min, and 300mm/min, and the rotational speed of the tool was increased to 1000rpm, 2000rpm, and 3000rpm. As a result of the experiment, the tensile strength increased as the rotational speed of the tool changed at each tool welding speed. In addition, as the welding speed of the tool increased, the tensile strength of the weld was increased. The condition with the highest tensile strength of the weld was found to be a tool feed speed of 300 mm/min and a tool rotation speed of 3000rpm.

피어싱 공정에서의 펀치 마모가 전단면에 미치는 영향 분석 (Analysis of the effect of punch wear on shear surfaces in the piercing process)

  • 전용준;김동언
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.28-33
    • /
    • 2022
  • The recent increasing application rate of advanced high-strength steel(AHSS) for automotive parts makes it difficult to ensure the durability of forming tools. Significant load and friction generated during the piercing process of AHSS increase the wear rate and the damage degree to dies. These harsh process conditions also yield product failures, such as dimensional inconsistency of pierced holes and insufficient quality of hole's sheared edge. This study analyzed the effect of punch wear on the sheared surface of pierced parts and the forming load during the piercing process. Wear-shaped punches showed approximately 20% higher piercing load than normal-shaped punches, and the rollover ratio of the sheared surface also increased. It is considered that the dull edge of wear-shaped punches does not penetrate directly into the material but shears after tensioning it in a piercing direction. In addition, wear-shaped punches experienced compressive load even after completing the piercing process during the down-stroke and tensile load during the up-stroke. This load variation is related to the smaller diameter piercing holes produced by wear-shaped punches compared to normal-shaped punches. Thus, we demonstrated the predictability of the wear level of dies through a comparative analysis of the piercing load pattern.

망막질환 치료를 위한 어플리케이터 허브와 캐뉼러 일체화 금형기술 및 접합강도 분석 (Applicator parts hub and cannula integrated mold technology and bonding strength analysis for retinal disease treatment)

  • 유정현;김용대;이정원
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.40-47
    • /
    • 2023
  • Macular degeneration and glaucoma are representative age-related retinal diseases that rank second and third in the prevalence of retinal diseases, and are a kind of degenerative neurological disease. Irreversible visual acuity and visual field damage may occur, and the number of patients is rapidly increasing as the population ages. Since this retinal disease is a chronic disease, continuous drug treatment is required. There are various drug delivery methods for treatment, but direct injection of the drug into the intravitreal is the most effective for continuous delivery of the drug over a long period of time. In order to solidify Dexamethasone, a retinal disease treatment, and insert it into the primary intravitreal, it is important to develop a technology to miniaturize the treatment and an applicator to deliver the treatment. In this study, a mold technology was developed to integrate the cannula and hub, which are one part of applicator. In addition, surface treatment was performed on the outside of the cannula to improve the bonding strength between the cannula and the hub, and the bonding strength according to each condition was analyzed through a tensile test.

  • PDF

사출성형기의 속도제어 방식에 따른 형개거리에 관한 연구 (A study on the mold opening stroke according to the control method of the injection molding machine)

  • 정현석;이춘규
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.56-61
    • /
    • 2021
  • The increase in automation facilities in the injection molding industry is a very important process control item. The most important item when constructing an unmanned machine using a take-out robot is the "mold opening stroke" of the mold. The injection molding machine control method is divided into hydraulic type and electric type, and there have been few studies on the mold opening distance according to the control method. In this study, the correlation was confirmed by increasing the injection speed to 20, 50, 80, and 100% for the three types of hydraulic control method, open loop and close loop, and electric control method. Through the experiment, the following results were obtained. (1) It can be seen that the reproducibility is excellent with the electric, close loop, and open loop control methods. (2) When the injection speed is set to 50%, the mold opening distance is 263.10~263.27 mm, which is the most reproducible. (3) As a result of ANOVA, both injection speed and mold opening distance showed a significant difference in the hydraulic control method (p<0.05), but it was verified through experiments that there was no significant difference in the electric control method. Based on these results, when electric control is selected rather than hydraulic control, the reproducibility of the mold opening distance is excellent, so it is thought that the taking-out robot can take the object out of the mold more safely.

금속 몰드와 전기도금을 이용한 금속 메쉬 제조 (Fabrication of metal mesh sheets using metal mold and electoplating)

  • 이주열;이상열;김만
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.171-171
    • /
    • 2016
  • Metal mesh는 ITO를 대체한 물질의 85%를 차지하는 신소재로서 저비용 고전도도를 갖고 있어 그 활용도가 높으며, Metal mesh를 활용한 투명 LED 디스플레이는 기존 ITO 투명 디스플레이보다 유지보수가 용이하고, 자원절약뿐만 아니라 경제적이다. 따라서 본 연구는 Metal mesh가 경제적인 활용 및 시장 확대가 가능할 수 있도록 연구하는데 목적이 있다. 본 연구는 Metal mesh를 공정 상 더 쉽게 생산 가능하게 하는 Metal master를 제작하였다. 마스터의 제작 시 문제가 되는 경도를 해결하기 위해 도금액을 개발하여 적용시켰고 노광시간, 선폭, 현상시간의 조절을 통해 상호간의 영향 관계를 규명하고 최적조건을 찾아 Photolithography공정에 적용하였다. 또한 미세패턴 형성의 최적조건을 찾고 니켈 전기도금을 진행하였다. Metal mesh의 문제점인 Visibility, Moire 현상을 해결하기 위해 Metal master의 선폭을 $2.5{\mu}m$까지 낮췄으며, 그 결과, 선폭 $2.5{\mu}m$, 깊이 $8{\mu}m$, 두께 $100{\mu}m$의 Ni master를 제작하였다. 이 마스터를 이용하여 도금부터 전사하는 단계까지 도금공정의 전반적인 내용을 다루었다.

  • PDF

DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구 (A study on the manufacturing of metal/plastic multi-components using the DSI molding)

  • 하석재;차백순;고영배
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.