• 제목/요약/키워드: metal melting

검색결과 489건 처리시간 0.031초

Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성 (Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes)

  • 김영완;최병구;안순호
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.382-388
    • /
    • 2000
  • 이온전도도가 높으며 균일하고 또 기계적 강도와 전기화학적 안정성이 우수한 전해질막을 얻기 위하여 poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP) 공중합체를 전해질의 지지체로 선택하고, LiClO$_4$ 염이 포함된 ethylene carbonate (EC)와 ${\gamma}$-butyrolactone (GBL)의 흔합용매를 사용하여 겔-전해질을 제조하였다. 다양한 조성의 겔-전해질에 대하여 이온전도도, 열분석 및 선형주사전위 실험을 수행하였다. 이온전도도는 30PVdF-HFP+7.8LiClO$_4$+62.2EC/GBL 전해질막에서 3.8$\times$$10^{-3}$ S$cm^{-1}$ /로 가장 높았다. 열분석 결과에서 대부분의 시료는 대략 10$0^{\circ}C$ 정도까지는 안정하였으며, 특히 염은 고분자 사슬과 민감하게 반응하여 PVdF 결정질의 고온용융점을 낮추는 건을 확인하였다. 리튬 금속과 전해질 사이의 부식에 의해 생성된 부동태막에 의해 계면저항이 시간에 따라 계속적으로 증가하는 것을 확인하였으며, anodic stability는 대략 4.5 V vs. Li까지 안정한 것으로 측정되었다.

  • PDF

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

PCB스크랩으로부터 유가금속성분 회수를 위한 용융처리 (Melting of PCB scrap for the Extraction of Metallic Components)

  • 권의혁;장성환;한정환;김병수;정진기;이재천
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.31-36
    • /
    • 2005
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals mixed with various types of plastics and ceramics. In this study, high temperature pyre-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. For this purpose, PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analyses were made. After the oxidation of the PCB scrap, $30.6wt\%SiO_2,\;19.3wt\%Al_2O_3\;and\;14wt{\%}CaO$ were analyzed as major oxides, and thereafter, a typical composition of $32wt\%SiO_2-20wt\%Al_2O_3-38wt{\%}CaO-10wt\%MgO$ was chosen as a basic slag system for the separation of metallic components. Moreover a size effect of crushed PCB scrap was also investigated. During experiments a high frequency induction furnace was used to melt and separate metallic components. As a result, it was found that the size of oxidized PCB scrap was needed to be less 0.9 m to make a homogeneous liquid slag and to recycle metallic components over $95\%$.

자전연소합성법에 의한 ZrB2 세라믹분말합성 및 NaCl의 영향 (Preparation of ZrB2 by Self-propagating Synthesis and Its Characteristics)

  • 김진성;;원창환
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.255-258
    • /
    • 2014
  • Zirconium boride is an artificial or which is rarely found in the nature. $ZrB_2$ is popular in the hard material industry because it has a high melting point, excellent mechanical properties and chemical stability. There are two known methods to synthesize $ZrB_2$. The first involves direct reaction between Zr and B, and the second is by reduction of the metal halogen. However, these two methods are known to be unsuitable for mass production. SHS(Self-propagating High-temperature Synthesis) is an efficient and economic method for synthesizing hard materials because it uses exothermic reactions. In this study, $ZrB_2$ was successfully synthesized by subjecting $ZrO_2$, Mg and $B_2O_3$ to SHS. Because of the high combustion temperature and rapid combustion, in conjunction with the stoichiometric ratio of $ZrO_2$, Mg and $B_2O_3$; single phase $ZrB_2$ was not synthesized. In order to solve the temperature problem, Mg and NaCl additives were investigated as diluents. From the experiments it was found that both diluents effectively stabilized the reaction and combustion regime. The final product, made under optimum conditions, was single-phase $ZrB_2$ of $0.1-0.9{\mu}m$ particle size.

이산화탄소 포집용 극박형 Pd-Cu 멤브레인 접합 (Joining Foil-typed Pd-Cu Membranes to Collect CO2 Gas)

  • 유경우;위소영;김겸;이창하;백일현;박진우
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1056-1063
    • /
    • 2010
  • We present a new joining method for Pd-Cu membrane foils used as permeation tubes to collect $CO_2$. Since foils have poor mechanical strength, joining should be done at low temperatures to reduce residual stresses and without joining pressure. This contradicts the well known conditions for good contact between base materials that determines joint qualities. We selected Sn-Ag-Cu alloys that are highly reactive with Pd and Cu as a filler metal. As the filler melts at joining temperatures as low as $220{\sim}280^{\circ}C$, Pd and Cu are dissolved into the melt and react with the filler elements, which raises the melting temperature of the filler based on eutectic structures among the elements. Then, isothermal solidification progresses for the rest of the joining time. Intermetallic compounds (IMC) in the joints, one of the main factors for brittle joints, are inevitably formed. However, by optimizing both joining time and temperature, we balanced the wettability with IMC. Sealing test results confirmed that the joints are mechanically reliable during operation.

합금성분변화와 균질화처리에 따른 M2 고속도강의 탄화물 형성거동 (Effect of Alloying Elements and Homogenization Treatment on Carbide Formation Behavior in M2 High Speed Steels)

  • 하태권;양은익;정재영;박신화
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.589-597
    • /
    • 2010
  • In the present study, the effect of variation in alloying elements on the carbide formation behavior during casting and homogenization treatment of M2 high speed steels was investigated. M2 high speed steels of various compositions were produced by vacuum induction melting. Contents of C, Cr, W, Mo, and V were varied from the basic composition of 0.8C, 0.3Si, 0.2Mn, 4.0Cr, 6.0W, 5.0Mo, and 2.0V in weight percent. Homogenization treatment at $1150^{\circ}C$ for 1.5 hr followed by furnace cooling was performed on the ingots. Area fraction and chemical compositions of eutectic carbide in as-cast and homogenized ingots were analyzed. Area fraction of eutectic carbide appeared to be higher in the ingots with higher contents of alloying elements the area fraction of eutectic carbide also appeared to be higher on the surface regions than in the center regions of ingots. As a result of the homogenization treatment, $M_2C$ carbide, which was the primary eutectic carbide in the as-cast ingots, decomposed into thermodynamically stable carbides, MC and $M_6C$. The latter carbide was found to be the main one after homogenization. Fine carbides uniformly distributed in the matrix was found to be MC type carbide and coarsened by homogenization.

아연의 제련 및 리사이클링 현황 (Current Status of Zinc Smelting and Recycling)

  • 손호상
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.30-41
    • /
    • 2019
  • 아연의 전세계 생산량은 약 1,300만 톤 정도이며, 철, 알루미늄, 구리에 이어서 네 번째로 많이 사용되는 금속이다. 아연을 리사이클링하여 2차지금을 생산하는 경우 광석으로부터 1차지금을 생산하는데 필요한 에너지의 약 75 %를 절약할 수 있으며, $CO_2$ 발생량은 약 40 %를 절감할 수 있다. 그러나 아연의 주 용도가 철강재의 도금용이기 때문에 아연의 리사이클링율은 약 25 % 수준으로 다른 금속보다 낮은 수준이다. 아연의 리사이클링 원료에는 제강분진, 황동 제조시에 발생하는 분진, 비철금속의 제조공정에서 발생하는 슬러지, 아연 잉곳의 재용해나 용융아연도금을 할때 생성되는 드로스, 폐건전지, 그리고 금속성 스크랩 등이 있다. 제강분진과 폐건전지가 가장 활발하게 리사이클링 되고 있다. 이러한 리사이클링 공정의 대부분은 건식제련법을 응용하고 있으나, 최근에는 건식과 습식의 복합처리에 관해서도 많은 관심이 주어져 있다.

완전 무치악 환자에서 CAD-CAM 기법을 이용한 상악 총의치 및 하악 임플란트 피개의치 수복: 증례 보고 (A case of digital maxillary complete denture and mandibular implant overdenture fabricated by CAD-CAM technique)

  • 김건민;오경철;김상현;한철관;김지환
    • 대한치과보철학회지
    • /
    • 제59권4호
    • /
    • pp.442-450
    • /
    • 2021
  • 컴퓨터 지원 설계 및 제조 기법(CAD-CAM)은 치과 영역에서 급속도로 발전해온 분야로, 다양한 보철 치료 영역에 적용되고 있다. 이 중 절삭형 방식(Subtractive Manufacturing)으로 분류되는 절삭가공 기법을 이용한 의치 제작은 상용화된 디지털 총의치 제작 방식 중 하나이며, 동시에 첨가형 방식(Additive Manufacturing)으로 분류되는 레이저 소결 혹은 용융 기법을 활용하여 피개의치를 위한 금속구조물을 보다 효율적으로 제작할 수 있게 되었다. 본 증례에서는, CAD-CAM을 통해 절삭형 방식으로 제작한 상악 총의치와 3D 금속 프린팅을 이용한 금속구조물과 절삭형 방식으로 제작된 인공치를 접목한 하악 임플란트 피개의치를 제작하였다. 이를 통해 기능적, 심미적으로 적절한 임상적 결과를 얻었으므로 이를 보고하는 바이다.

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 춘계학술논문요약집
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF

전기로 제강분진의 재활용과정에서 발생된 Clinker의 전기로에서의 가열용해에 의한 자원화에 관한 연구 (A Study on the Resource Development by Heat Dissolution in Electric Arc Furnace of Clinker generated in the Recycling Process of Electric Arc Furnace Dust)

  • 윤재홍;윤치현;本庄昭郎
    • 열처리공학회지
    • /
    • 제36권1호
    • /
    • pp.22-32
    • /
    • 2023
  • In general, when scrap is dissolved in an electric arc furnace, the amount of electric furnace steel dust (EAFD) generated is about 1.5% of the scrap charge amount, and the electric furnace steel dust collected by the bag filter is charged into the Rotary Kiln or Rotary Hearth Furnace (RHF), and the zinc component is recovered as crude zinc oxide, at which time a clinker of Fe-Base is generated. In this research, first, for the efficient resource conversion of electric furnace steel dust, a reduction and roasting experiment was conducted and the reaction kinetics was examined. As a result of the experiment, it was observed that the reduction and roasting reaction was actively conducted in the range of 1100~1150℃, and melting occurred in the range of 1250℃. In the past, this clinker was widely used as a roadbed material for road construction and an Fe-Source for cement production, but in recent years, it has been mainly reclaimed due to strengthening environmental standards. However, landfill treatment is by no means a desirable treatment method due to environmental pollution caused by leachate, expensive landfill costs, and waste of Fe resources. Therefore, in order to more actively recycle the Fe component in the clinker, first of all the clinker was pulverized into an optimal particle size, and anthracite and binder (starch) were added to the magnetic material obtained by specific gravity and magnetic separation for briquet. As a experimental results, it was possible to efficiently separate clinker as Fe component and other slag component by specific gravity and magnetic force. As a results of loading and dissolving the manufactured briquet clinker in an electric arc furnace, it was observed that the unit of power and production yield were clearly improved and the carbon addition effect in molten metal was also somewhat.