DOI QR코드

DOI QR Code

Current Status of Zinc Smelting and Recycling

아연의 제련 및 리사이클링 현황

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2019.09.23
  • Accepted : 2019.10.21
  • Published : 2019.10.31

Abstract

Global production of zinc is about 13 million tons and zinc is the fourth-most widely used primary metal in the world following iron, aluminum and copper. When zinc is recycled to produce secondary zinc, it can save about 75 % of the total energy that is needed to produce the primary zinc from ore, and in therms of $CO_2$ emissions reduced by about 40 %. However, since zinc is mainly used for galvanizing of steel, the recycling rate of zinc is about 25 %, which is lower than other metals. The raw materials for recycling of zinc include dusts generated in the production of steel and brass, sludge in the production process of non-ferrous metals, dross in the melting of zinc ingots or hot dip galvanizing, waste batteries, and metallic scrap. Among them, steelmaking dust and waste batteries are most actively recycled up to now. Most of the recycling process uses pyrometallurgical methods. Recently, however, much attention has been given to a combined process of pyrometallurgical and hydrometallurgical processes.

아연의 전세계 생산량은 약 1,300만 톤 정도이며, 철, 알루미늄, 구리에 이어서 네 번째로 많이 사용되는 금속이다. 아연을 리사이클링하여 2차지금을 생산하는 경우 광석으로부터 1차지금을 생산하는데 필요한 에너지의 약 75 %를 절약할 수 있으며, $CO_2$ 발생량은 약 40 %를 절감할 수 있다. 그러나 아연의 주 용도가 철강재의 도금용이기 때문에 아연의 리사이클링율은 약 25 % 수준으로 다른 금속보다 낮은 수준이다. 아연의 리사이클링 원료에는 제강분진, 황동 제조시에 발생하는 분진, 비철금속의 제조공정에서 발생하는 슬러지, 아연 잉곳의 재용해나 용융아연도금을 할때 생성되는 드로스, 폐건전지, 그리고 금속성 스크랩 등이 있다. 제강분진과 폐건전지가 가장 활발하게 리사이클링 되고 있다. 이러한 리사이클링 공정의 대부분은 건식제련법을 응용하고 있으나, 최근에는 건식과 습식의 복합처리에 관해서도 많은 관심이 주어져 있다.

Keywords

References

  1. Sohn, Hosang 2019 : Engineering of Resources Recycling, p.14, KNU Press, Daegu, Korea.
  2. Thornton, C. P., 2007 : Of brass and bronze in prehistoric Southwest Asia, Metals and Mines: Studies in Archaeo metallurgy, Ed. by S. La Niece, D. Hook, P. Craddock, pp.123-135, Archetype Publications, London.
  3. Habashi, F., 2002 : Discovering the 8th Metal - A History of Zinc, International Zinc Association (IZA), Brussels, Belgium.
  4. Praphulla, C. R., 1903 : A History of Hindu Chemistry, Vol. 1 2nd Ed., p.71, 88, 156, The Bengal Chemical & Pharmaceutical Works, Ltd., Calcutta, India.
  5. Kim, Y. D., et al., 1965 : A Study on the Zinc Smelting Test Operation, Journal of the Korean Institute of Metals 3(4), pp.155-158.
  6. Norgate, T., 2013 : Metal recycling: The need for a life cycle approach, p.2, EP135565, CSIRO, Australia.
  7. Bureau of International Recycling, 2008 : Report on the Environmental Benefits of Recycling, p.29.
  8. DiFrancesco, C. A. et al., 2017 : ZINC STATISTICS, Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140, at https://minerals.usgs.gov/minerals/pubs/historicalstatistics/.
  9. International Lead and Zinc Study Group, 2019 : REVIEW OF TRENDS IN 2018 ZINC, PRESS RELEASE, ILZS, http://www.ilzsg.org/
  10. International Zinc Association (IZA), www.zinc.org
  11. International Zinc Association, 2015 : Zinc Environmental Profile - 2015 Update Life Cycle Assessment, p.4, IZA, www.zinc.org.
  12. International Zinc Association, 2015 : Zinc Recycling Closing the Loop, IZA, www.zinc.org.
  13. Grimes, S., Donaldson, J., and Gomez, G. C., 2008 : Report on the Environmental Benefits of Recycling, p.27, Bureau of International Recycling, Brussels, Belgium.
  14. Habashi, F., 2012 : Retorts in the production of metals - a historical survey, METAL 66(4), pp.149-155.
  15. Sohn, Hosang 2019: Engineering of Resources Recycling, p.224, KNU Press, Daegu, Korea.
  16. Trpcevska, J. et al., 2018 : Leaching of Zinc Ash with Hydrochloric Acid Solutions, Pol. J. Environ. Stud. 27(4), pp.1765-1771. https://doi.org/10.15244/pjoes/78039
  17. Yamaguchi, S., 1996 : Recycling Processes of Zinc, Materia Japan 35(12), pp.1298-1302. https://doi.org/10.2320/materia.35.1298
  18. Namkoong, S. and Her, B. Y., 2001 : Study on the characteristic and behavior of dross in galvanizing bath, J. Korean Institute of Surface Engineering 34(4), pp.313-320.
  19. Sohn, Ho-Sang, 2018 : Status of Pyrometallurgical Treatment Technology of EAF Dust, J. of Korean Inst. of Resources Recycling 27(2), pp.68-76. https://doi.org/10.7844/KIRR.2018.27.2.68
  20. Moezzi, A., Andrew, M. M., and Michael, B. C., 2012 : Zinc oxide particles: Synthesis, properties and applications, Chemical Engineering Journal 185-186(3), pp.1-22. https://doi.org/10.1016/j.cej.2012.01.076
  21. John, M. F., Kok T. W., and Ian L. C., 1994 : TOP SUBMERGABLE LANCE, U.S. Patent 5,308,043.
  22. Oda, H., Ibaraki, T., and Abe, Y., 2006 : Dust Recycling System by the Rotary Hearth Furnace, Nippon Steel Technical Report 94, pp.147-152.
  23. Lin, X., 2017 : Pyrometallurgical recycling of electric arc furnace dust, J. Cleaner Production 149, pp.1079-1100. https://doi.org/10.1016/j.jclepro.2017.02.128
  24. Nakamura, T., et al., 2008 : Basic Consideration on EAF Dust Treatment Using Hydrometallurgical Processes, Resources Processing 55, pp.144-148. https://doi.org/10.4144/rpsj.55.144
  25. Kim, Min-Seuk, et al., 2004 : Application of Factorial Design to $NH_4Cl$ Leaching of ZnO, Journal of the Korean Society for Geosystem Engineering, 41(5), pp.354-363.
  26. Massimo, G. M., 2016 : INDUTEC/EZINEXIntegrate Process on Secondary Zinc-Bearing Materials, J. Sustain. Metall. 2, pp.133-140. https://doi.org/10.1007/s40831-016-0041-0
  27. Kim, Byung-Su, et al., 2012 : Behaviors of Lead and Zinc in Top Submerged Lance (TSL) Plant at Sukpo Zinc Refinery, Materials Transactions 53(5), pp.985-990. https://doi.org/10.2320/matertrans.M2012006
  28. Skogstad, E. and Louise, O., 2017 : Recycling Zinc from Alkaline batteries,Recovering Zinc from 1,5V AA alkaline batteries through hydrometallurgical techniques, p.3, Bachelor's thesis, Chalmers University of Technology, Gothenburg, Sweden.
  29. Fisher, K., et al., 2006 : Battery Waste Management Life Cycle Assessment, p.22, 24, 25, ENVIRONMENTAL RESOURCES MANAGEMENT Lim., Brussels, Belgium.
  30. Fisher, K., et al., 2006 : Battery Waste Management Life Cycle Assessment, p.20, ENVIRONMENTAL RESOURCES MANAGEMENT Lim., Brussels, Belgium.

Cited by

  1. Hydrochloric Acid Leaching Behaviors of Copper and Antimony in Speiss Obtained from Top Submerged Lance Furnace vol.10, pp.10, 2019, https://doi.org/10.3390/met10101393