• Title/Summary/Keyword: metal ion chelating ability

Search Result 10, Processing Time 0.025 seconds

Development and Application of Cation-exchange Membranes Including Chelating Resin for Efficient Heavy-metal Ion Removal (효율적인 중금속 이온 제거를 위한 킬레이팅 수지를 포함한 양이온 교환막의 개발 및 응용)

  • Kim, Do-Hyeong;Choi, Young-Eun;Park, Jin-Soo;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.129-137
    • /
    • 2017
  • In this study, we have developed cation-exchange membranes (CEMs) which can efficiently separate heavy-metal ions among the cations contained in a water system. Sulfonated polyetheretherketone (SPEEK) was used as a base polymer and a powdered chelating resin with strong binding ability to heavy-metal ions was added into it. In order to optimize the performance of the CEM, the content of chelating resin powder and the ion exchange capacity of SPEEK have been controlled. As a result, it was confirmed that the removal efficiency of heavy metal ion was improved by more than 20% by applying the CEM to membrane capacitive deionization (MCDI).

Highly CO2-soluble 5-Amido-8-hydroxyquinoline Chelating Agents for Extraction of Metals in Sc-CO2

  • Chang, Fei;Park, Seo-Hun;Kim, Hakwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1327-1331
    • /
    • 2008
  • Novel $CO_2$-soluble 8-hydroxyquinoline (8-HQ) chelating agents were synthesized and evaluated for solubility and metal ion extraction ability in supercritical $CO_2\;(Sc-CO_2)$. Among them, secondary amide-containing 8- HQ derivatives cannot be dispersed well into Sc-$CO_2$, but tertiary amide-containing derivatives can dissolve completely in Sc-$CO_2$ even at low CO2 pressures, perhaps owing to the predominant intermolecular interaction between the chelating agent and the $CO_2$ molecule. Based on 8-HQ chelating agent solubility data, we investigated the extraction of metal ions ($Co^{2+}$, $Cu^{2+}$, $Sr^{2+}$, $Cd^{2+}$, and $Zn^{2+}$) using two highly $CO_2$-soluble 8-HQ derivatives (4d, 4e) in Sc-$CO_2$. The extraction efficiency of tertiary amide-containing 8-HQ ligands, both fluorinated and non-fluorinated forms, was dramatically increased in the presence of diethyl amine (organic base). We suggest that diethyl amine could play an important synergistic role in the stronger metal binding ability of 8-HQ through an in situ deprotonation reaction in Sc-$CO_2$ medium.

An Investigation for the Adsorption of Heavy Metal Ions by Polyamine Organic Adsorbent from the Aqueous Solution - The Influence of Molecular Weight and Degree of Deacetylation of Chitosan - (수용액 중에서 Polyamine계 유기응집제를 이용한 중금속 이온의 흡착 - 키토산의 분자량과 탈아세틸화도 -)

  • Park, Young-Mi;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.458-464
    • /
    • 2006
  • The adsorption ability of heavy metal ions from the aqueous solution by chitosan, which it is well known natural biopolymer, has been investigated. The fundamental study in this research is focusing on the physicochemical adsorption utilizing the chitosan as a organic chelating adsorbent, adsorb especially heavy metal ions from the waste liquid solution. The adsorption ability of the chitosan between metal ions, having different characteristics with Mw of 188,600, 297,200, and 504,200 g/mol and degree of deacetylation (DD) of 86.92% and 100% were investigated targeting on the $Ni^{2+}$, $Co^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ ions, respectively. The uptake of heavy metal ions with chitosan was performed by atomic absorption flame emission spectrophotometer (AAS) as conducted residual metal ions. It was found that chitosan has an strong adsorption capacity for some metals under certain conditions. Chitosan, which have 100% degree of deacetylation showed high adsorption recovery ratio and have an affinity for all kinds of heavy metals. In contrast, the molecular weight of chitosan was not completely affected on metal ion adsorption.

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Investigation of n-Butanol and Ethyl Acetate Extracts from Thermal Treatment Yam (Dioscorea batatas DECNE.) for their Antioxidant Activities

  • Duan, Yishan;Kim, Gyeong-Hwuii;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.363-371
    • /
    • 2015
  • n-Butanol and ethyl acetate extracts of thermal treatment yam (Dioscorea batatas $D_{ECNE.}$) belonging to the family Dioscoreaceae were measured for their radical scavenging activity and lipid peroxidation inhibition ability. In this study, ethyl acetate extract showed the most potent antioxidant activity evaluated by ferrous ion chelating activity and NO radical scavenging activity. Nevertheless, n-butanol extract was more effective in inhibiting linoleic acid peroxidation. A significant difference between n-butanol extract and ethyl acetate extract in nitrite scavenging activity ${\beta}$-carotene bleaching assays could not be found. Also, the results of this study showed that thermal treatment yam could be used as easily accessible source of natural antioxidants and as a possible food supplement.

Extraction Characteristics and Antioxidant Activity of Ethanol Extract of Rhus javanica Bark (붉나무 껍질 에탄올 추출물의 추출특성과 항산화 활성에 관한 연구)

  • Noh, Jeong-Sook;Park, Sun-Yi;Jeong, Kap-Seop
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.555-561
    • /
    • 2017
  • This study was conducted to investigate the several physicochemical extraction characteristics and the antioxidant activities of ethanol extract from Rhus javanica bark. The contents of soluble solid and sugar in extract was measured to 73.5 mg/100g dry basis and $17.8^{\circ}Brix$, respectively. The contents of total aromatics, total flavonoids and total phenolic compounds was measured to 0.508 in absorbance, 49.88 mg/100g and 296.6 mg/100g, respectively. The reducing power of extract was about 27.5 % of ascorbic acid with the same soluble solid contents of the extract. But the ferric reducing antioxidant power and the DPPH radical scavenging ability of extract were measured to equivalent to those of ascorbic acid. The metal ion chelating ability of the extract was 81.58 % whereas that of ascorbic acid was 74.73 %. The nitrite scavenging ability of the extract was measured to 51.76 % at pH 2. And the antioxidative effect of the extract on soybean oil was observed with Rancimat test.

Antioxidant Activity and Protection from DNA Damage by Water Extract from Pine (Pinus densiflora) Bark

  • Jiang, Yunyao;Han, Woong;Shen, Ting;Wang, Myeong-Hyeon
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.116-121
    • /
    • 2012
  • Water extract from Pinus densiflora (WPD) was investigated for its antioxidant activity and its ability to provide protection from DNA damage. A series of antioxidant assays, including a 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging assay, a reducing power assay, a metal-chelating assay, a superoxide radical scavenging assay, and a nitrite scavenging ability, as well as a DNA damage protection assay were performed. Total phenolic content was found to be 211.32 mg Tan/g WPD. The extract scavenged 50% DPPH free radical at a concentration of 21.35 ${\mu}g/mL$. At that same concentration, the reducing power ability of WPD was higher than that of ${\alpha}$-tocopherol. The extract chelated 68.9% ferrous ion at the concentration of 4 mg/mL. WPD showed better nitrite scavenging effect at the lower pH. Meanwhile, WPD exhibited a strong capability for DNA damage protection at 1 mg/mL concentration. Taken together, these data suggest water extract from Pinus densiflora could be used as a suitable natural antioxidant.

The Inhibitory Effect of New Hydroxamic Acid Derivatives on Melanogenesis

  • Baek, Heung-Soo;Rho, Ho-Sik;Yoo, Jae-Won;Ahn, Soo-Mi;Lee, Jin-Young;Lee, Jeong-A;Kim, Min-Kee;Kim, Duck-Hee;Chang, Ih-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.43-46
    • /
    • 2008
  • The aim of present study was to examine the inhibitory effects of hydroxamic acid derivatives on the melanogenesis. We found that hydroxamic acid moiety was important for anti-melanogenic activity. Compounds 1a and 1b strongly inhibited melanin synthesis via deactivation of tyrosinase. Hydroxamic acid has metal ion chelating ability which is similar to that kojic acid, however, anti-tyrosinase mechanism of compounds 1a and 1b was different from that of kojic acid. They showed noncompetitive inhibition kinetics

Studies on the Radical Scavenging Effects and the Inhibitory Effects on ACE Activity of Several Flavonoids (각종 Flavonoids의 라디칼 봉쇄능과 ACE 활성 억제능에 관한 연구)

  • 강진훈
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1318-1322
    • /
    • 2003
  • This study was carried out to identify the biophysical utility of bioflavonoids by the determination of their antioxidative activities, radical scavenging activity and inhibitory effect on the ACE activity. The results obtained were as follows; All flavonoids experimented greatly inhibited the linoleic acid oxidation from the early period of oxidation, and the radical scavenging ability was also greater in genistein and daidzein than other flavonoids, generally showing donating ability. Rutin has the metal-chelating ability with C $u^{2+}$ and $Mg^{2+}$, which means to have the inhibitory effect on the promotive oxidation of lipid by metal ion. All flavonoids experimented inhibited the angiotensin converting enzyme (ACE) activity, which was greater in genistein and daidzein than other flavonoids.s.

A Research on Powder Dispersion Ability Using Several Content, Variety of Powder and Additive in Aqueous System (파우더, 첨가제의 종류와 함량에 따른 수상 내에서의 파우더 분산에 관한 연구)

  • Kim, Sun-Young;Kim, Il-Gu;Choi, Seung-Man;Lee, Sang-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.271-276
    • /
    • 2012
  • In this study, the dispersion ability of powder in low viscosity solubilization system that depends on variety and amount of additives and powders was investigated. A PMMA powder shows outstanding dispersion ability because of its repulsive force of partially charged chain and low density of porous structure. A sample, which contains salts, showed better dispersion tendency than a sample without any additives. The dispersion ability was quantity of salts dependent. Furthermore, a sample with divalent ion salts, like $MgSO_4$, showed better dispersion tendency than that of monovalent ion salts, like NaCl or KCl. The reason for the better dispersion tendency was due to the existence of ionized salts around the powders which significantly improves repulsive force between powders and consequently reduces powder aggregation. The sample with chelating agent, like EDTA as an additive, had improved dispersion ability. EDTA chelates and blocks metal cation therefore anion's character is maximized and repulsive force between powders is improved. As a result, salts and EDTA help to improve the powder dispersion ability and the stability of product.