DOI QR코드

DOI QR Code

The Inhibitory Effect of New Hydroxamic Acid Derivatives on Melanogenesis

  • Published : 2008.01.20

Abstract

The aim of present study was to examine the inhibitory effects of hydroxamic acid derivatives on the melanogenesis. We found that hydroxamic acid moiety was important for anti-melanogenic activity. Compounds 1a and 1b strongly inhibited melanin synthesis via deactivation of tyrosinase. Hydroxamic acid has metal ion chelating ability which is similar to that kojic acid, however, anti-tyrosinase mechanism of compounds 1a and 1b was different from that of kojic acid. They showed noncompetitive inhibition kinetics

Keywords

References

  1. Penalver, M. J.; Hiner, A. N. P.; Rodriguez-Lopez, J. N.; Garcia- Canovas, F.; Tudela, J. Biochim. Biophys. Acta 2002, 1597, 140 https://doi.org/10.1016/S0167-4838(02)00264-9
  2. Fenoll, L. G.; Rodriguez-Lopez, J. N.; Garcia-Sevilla, F.; Garcia- Ruiz, P. A.; Varon, R.; Garcia-Canovas, F.; Tudela, J. Biochim. Biophys. Acta 2001, 1548, 1 https://doi.org/10.1016/S0167-4838(01)00207-2
  3. Ohyama, Y.; Mishima, Y. Fragrance J. 1990, 6, 53
  4. Cho, S. J.; Roh, J. S.; Sun, W. S.; Kim, S. H.; Park, K. D. Bioorg. Med. Chem. Lett. 2006, 16, 2682 https://doi.org/10.1016/j.bmcl.2006.02.018
  5. Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Bioorg. Med. Chem. 2005, 13, 433 https://doi.org/10.1016/j.bmc.2004.10.010
  6. Curto, E. V.; Kwong, C.; Hermerdorfer, H.; Glatt, H.; Santis, C.; Virador, V.; Hearing, V. J.; Dooley, T. P. Biochem. Pharmacol. 1999, 57, 663 https://doi.org/10.1016/S0006-2952(98)00340-2
  7. Kubo, I.; Kinst-Hori, I.; Chaudhuri, S. K.; Kubo, Y.; Sanchez, Y.; Ogura, T. Bioorg. Med. Chem. 2000, 8, 1749 https://doi.org/10.1016/S0968-0896(00)00102-4
  8. Makris, D. P.; Rossiter, J. T. Food Chemistry 2002, 77, 177 https://doi.org/10.1016/S0308-8146(01)00333-8
  9. Taira, J.; Miyagi, C.; Aniya, Y. Biochem. Pharmacol. 2002, 63, 1019 https://doi.org/10.1016/S0006-2952(01)00923-6
  10. Pirrung, M. C.; Tumey, L. N.; McClerren, A. L.; Raetz, C. R. H. J. Am. Chem. Soc. 2003, 125, 1575 https://doi.org/10.1021/ja0209114
  11. Denicola, A.; Souza, J. M.; Gatti, R. M.; Augusto, O.; Radi, R. Free Radic. Biol. Med. 1995, 19, 11 https://doi.org/10.1016/0891-5849(94)00239-G
  12. Vanjari, H.; Pande, R. J. Pharm. Biomed. Anal. 2003, 33, 783 https://doi.org/10.1016/S0731-7085(03)00282-6
  13. Farkas, E.; Enyedy, E. A.; Micera, G.; Garribba, E. Polyhedron 2000, 19, 1727 https://doi.org/10.1016/S0277-5387(00)00453-8
  14. Rich, P. R.; Wiegand, N. K.; Blum, H.; Moore, A. L.; Bonner, W. D. Biochim. Biophys. Acta 1978, 525, 325 https://doi.org/10.1016/0005-2744(78)90227-9
  15. Reddy, A. S.; Kumar, M. S.; Reddy, G. R. Tetrahedron Lett. 2000, 41, 6285 https://doi.org/10.1016/S0040-4039(00)01058-3
  16. Pomerantz, S. H. J. Biol. Chem. 1963, 238, 2351
  17. Rho, H. S.; Baek, H. S.; Kim, D. H.; Chang, I. S. Bull. Korean Chem. Soc. 2006, 27, 584 https://doi.org/10.5012/bkcs.2006.27.4.584
  18. Shi, Y.; Chen, Q.-X.; Wang, Q.; Song, K.-K.; Qiu, L. Food Chemistry 2005, 92, 707 https://doi.org/10.1016/j.foodchem.2004.08.031
  19. Shin, N.-H.; Ryu, S. Y.; Choi, E. J.; Kang, S.-H.; Chang, I.-M.; Min, K. R.; Kim, Y. Biochem. Biophys. Res. Commun. 1998, 243, 801 https://doi.org/10.1006/bbrc.1998.8169

Cited by

  1. Fruiting Bodies vol.38, pp.4, 2010, https://doi.org/10.4489/MYCO.2010.38.4.295
  2. In vitro toxicity of alternative oxidase inhibitors salicylhydroxamic acid and propyl gallate on Fusicladium effusum vol.83, pp.4, 2010, https://doi.org/10.1007/s10340-010-0312-7
  3. Evaluation of Novel Chalcone Oximes as Inhibitors of Tyrosinase and Melanin Formation in B16 Cells vol.349, pp.1, 2015, https://doi.org/10.1002/ardp.201500298
  4. Application of the polyphenylene ether-ether-sulfone ultrafiltration membrane for concentration of antioxidants from the Phyllitis scolopendrium L. extract vol.39, pp.2, 2015, https://doi.org/10.1039/C4NJ01589D
  5. vol.99, pp.2, 2015, https://doi.org/10.1094/PDIS-06-14-0633-RE
  6. Inhibitory Kinetics of Azachalcones and their Oximes on Mushroom Tyrosinase: A Facile Solid-state Synthesis vol.13, pp.5, 2016, https://doi.org/10.1002/cbdv.201500168
  7. Evaluation of Kojyl Benzoate Derivatives as Potential Depigmenting Agents in Mouse B16/F1 Melanoma Cells vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10772
  8. Antioxidant and Antityrosinase Activities of Various Extracts from the Fruiting Bodies of Lentinus lepideus vol.16, pp.3, 2011, https://doi.org/10.3390/molecules16032334
  9. Anticancer, antithrombotic, antityrosinase, and anti-α-glucosidase activities of selected wild and commercial mushrooms from Pakistan pp.20487177, 2018, https://doi.org/10.1002/fsn3.781
  10. ChemInform Abstract: The Inhibitory Effect of New Hydroxamic Acid Derivatives on Melanogenesis. vol.39, pp.23, 2008, https://doi.org/10.1002/chin.200823080
  11. Hydroxamic Acid Derivatives as Anti-melanogenic Agents: The Importance of a Basic Skeleton and Hydroxamic Acid Moiety vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.475
  12. 2,4-Dihydroxycinnamic Esters as Skin Depigmenting Agents vol.30, pp.7, 2008, https://doi.org/10.5012/bkcs.2009.30.7.1619
  13. Studies on depigmenting activities of dihydroxyl benzamide derivatives containing adamantane moiety vol.19, pp.5, 2008, https://doi.org/10.1016/j.bmcl.2008.12.106
  14. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds vol.116, pp.1, 2008, https://doi.org/10.1016/j.foodchem.2009.01.079
  15. Melanogenesis Inhibition by Mono-hydroxycinnamic Ester Derivatives in B16 Melanoma Cells vol.31, pp.1, 2008, https://doi.org/10.5012/bkcs.2010.31.01.181
  16. Assessment of Antioxidant and Phenolic Compound Concentrations as well as Xanthine Oxidase and Tyrosinase Inhibitory Properties of Different Extracts of Pleurotus citrinopileatus Fruiting Bodies vol.39, pp.1, 2008, https://doi.org/10.4489/myco.2011.39.1.012
  17. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae vol.19, pp.1, 2008, https://doi.org/10.1016/j.sjbs.2011.11.004
  18. Microbial Strains and Bioactive Exopolysaccharide Producers from Thai Water Kefir vol.46, pp.4, 2008, https://doi.org/10.4014/mbl.1804.04019
  19. Effects of SHAM on the Sensitivity of Sclerotinia sclerotiorum and Botrytis cinerea to QoI Fungicides vol.103, pp.8, 2008, https://doi.org/10.1094/pdis-12-18-2142-re
  20. In vitro antioxidant and antityrosinase activities of Manilkara kauki vol.71, pp.1, 2008, https://doi.org/10.2478/acph-2021-0009
  21. Thermodynamic, kinetic and docking studies of some unsaturated fatty acids-quercetin derivatives as inhibitors of mushroom tyrosinase vol.7, pp.4, 2020, https://doi.org/10.3934/biophy.2020027
  22. Screening of an Epigenetic Drug Library Identifies 4-((hydroxyamino)carbonyl)- N -(2-hydroxyethyl)- N -Phenyl-Benzeneacetamide that Reduces Melanin Synthesis by Inhibiting Tyrosinase Activity Independ vol.21, pp.13, 2008, https://doi.org/10.3390/ijms21134589