• Title/Summary/Keyword: metal forming

Search Result 1,376, Processing Time 0.032 seconds

Forming Limits for the Welded Sheets (용접판재의 성형한계에 관한 실험적 연구)

  • 허영무;김형목;서대교
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.429-436
    • /
    • 1999
  • In sheet metal forming , forming limit diagram is very important to design and analyze of sheet metal forming process. Recently tailor welded blanks of different thickness and different material and strength combinations are used widely in automobile industry to reduce car manufacturing cost. In order to analyze the forming characteristics of tailored welded blanks, we have investigated the forming limit dia-grams for 3 kinds of different material using mash seam and laser welding experimentally and dis-cussed for the characteristics of forming for tailor welded blanks. It is concluded that forming limit dia-gram for the different material combination TWB locates between FLD of the thinner base material sheet and the thicker ones.

  • PDF

Development of Analysis System for Sheet Metal Forming (박판금속 성형공정 해석시스템 개발)

  • 정완진;조진우
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 1999
  • An analysis system for sheet metal forming(SAT_STAMP) has been developed to improve the design and tryout process by predicting the deformation behavior more precisely. This analysis system consists of forming analysis, springback analysis and post processor modules. The more accurate prediction of stress history can be achieved due to the improved contact algorithm. Continuous simulation of sequential processes can be carried out conveniently without interruption by the improved data management of the developed system. The error of data transfer between forming analysis and springback analysis is minimized using the proper shell element. Several benchmark test results and practical results are presented to show the effectiveness and reliability of this program.

  • PDF

Effect of Specimen Geometry on deformation in laser forming of sheet metal (레이저 성형에서 시편의 기하학적 형상에 따른 변형의 양상에 관한 연구)

  • Nadeem, Q.;Seong, W.J.;Na, S.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.22-22
    • /
    • 2009
  • Laser forming is a promising technology in manufacturing, such as in the shipbuilding, automobile, microelectronics, aerospace and other manufacturing industries. This process forms the sheet metal by utilization of laser-induced thermal stresses. Laser forming process has been studied extensively for rectangular shape geometry. This basic study presents the change in deformation behavior of sheet metal during transition from linear to curved geometries and irradiations as well. A series of experiments have been conducted on a wide range of specimen geometries such as quarter-circular and half circular plate. The reasons for this behavior have been analyzed. Results are compared and analyzed by simulations using ABAQUS. Influence of developed stresses on the bending has been investigated. This study provides the more understanding of forming mechanism influenced by geometry effect.

  • PDF

A Study of prediction problem to Sheet metal forming processing (박판성형 공정에서의 불량 예측에 관한 연구)

  • Ko Hyung-Hoon;Lee Chan-Ho;Moon Won-Sub;Park Young-Keun;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.398-401
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. Such press-forming process are the used machine ability and the characteristic, used material, the accuracy of the part which becomes processing and side condition of a process are considered and the designed. The purpose of this study is apply efficiently sheet metal forming processing by 3D formation-analyzed program simulations in the site. By a study, forming process was simulation to drawing and trimming and cam process using static-implicit method software. By making apply this to an industrial site the productivity improvement and cost reduction etc. effect able was predicted.

  • PDF

Friction Model for Finite Element Analysis of Sheet Metal Forming Processes (박판 성형공정 유한요소 해석용 마찰모델)

  • Keum Y.T.;Lee B.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.

A Study on the Process Sequence Design of a Tub for the Washing Machine Container (세탁조의 제작공정해석 및 공정개선에 관한 연구)

  • 임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.359-374
    • /
    • 1994
  • Process sequence design in sheet metal forming process by the finite element method is investigated. The forming of sheet metal into a washing machine container is used to demonstrate the design of an improved process sequence which has fewer operations. The design procedure makes extensive use of the finite element method which has simulation capabilities of elastic-plastic modeling. A one-stage process to make an initial blank to the final product is simulated to obtain information on metal flow requirements. Loading simulation for a conventional method is also performed to evaluate the design criteria which are uniform thickness distribution around the finished part and maximum punch load within limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. This specific case conventional process sequence has three forming operations. This specific case can be considered for application of the method and for development of the sequence design methodology in general.

  • PDF

On the Springback Analysis of Sheet Metal Forming (판재성형의 탄성복원해석에 대하여)

  • 조진우;정완진
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.386-394
    • /
    • 1997
  • The analysis of the springback is done based on the stress of sheet after forming. Therfore, it is important to get the accurate stress from forming analysis. In this study, some parameters that influence on the accuracy of the springback estimation are investigated. Discretization of sheet and tools, choice of penalty constant and damping in contact treatment, and tool speed scaling are chosen as parameters. As a numerical example, the 2D draw bending benchmark problem of the NUMISHEET'93 is used. Also, the springback results of the s-rail benchmark problem of the NUMISHEET'96 are presented.

  • PDF

Thermoelastic Properties of Porous Metals After Material Forming Processes (다공성 금속의 성형공정 후 열탄성 계수)

  • 이종원;김진원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • The effective thermoelastic properties of porous metals are discussed herein after each material forming process such as hot pressing or extrusion. The voids in metal matrix are assumed to be initially spherical in shape and to be distributed randomly. Once the porous material deforms plastically due to each material forming process, the voids change their shape from a sphere to an ellipsoid and align in one direction. Since the voids are compressible in nature, the void volume fraction is assumed to be decreasing during each material forming process.

  • PDF

Application of Operating Window to Robust Process Optimization of Sheet Metal Forming (기능창을 이용한 박판성형의 공정 최적화)

  • Kim, Kyungmo;Yin, Jeong Je;Suh, Yong S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-121
    • /
    • 2009
  • It is essential to embed product quality in the design process to win the global competition. Many components found in many products including automobiles and electronic devices are fabricated using sheet metal forming processes. Wrinkle and fracture are two types of defects frequently found in the sheet metal forming process. Reducing such defects is a hard problem as they are affected by many uncontrollable factors. Attempts to solve the problem based on traditional deterministic optimization theories are often led to failures. Furthermore, the wrinkle and fracture are conflicting defects in such a way that reducing one defect leads to increasing the other. Hence, it is a difficult task to reduce both of them at the same time. In this research, a new design method for reducing the rates of conflicting defects under uncontrollable factors is presented by using operating window and a sequential search procedure. A new SN ratio is proposed to overcome the problems of a traditional SN ratio used in the operating window technique. The method is applied to optimizing the robust design of a sheet metal forming process. To show the effectiveness of the proposed method, a comparison is made between the traditional and the proposed methods using simulation software, applied to a design of particular sheet metal forming process problem. The results show that the proposed method always gives a more robust design that is less sensitive to noises than the traditional method.

  • PDF

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.