• Title/Summary/Keyword: metal electrode

Search Result 1,294, Processing Time 0.025 seconds

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

Sintering of ZrO2-modified 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 Piezoelectric Ceramics in a Reduced Atmosphere (ZrO2 첨가된 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 압전세라믹스의 환원분위기 소결)

  • Kang, Kyung-Min;Cho, Jeong-Ho;Nam, Joong-Hee;Ko, Tae-Gyung;Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.563-567
    • /
    • 2011
  • The most widely used piezoelectric ceramics are lead oxide based ferroelectrics (PZT). However, the toxicity of lead oxide and its high vapor pressure during processing have led to a demand for alternative lead-free piezoelectric materials. We synthesized Lead-free piezoelectric ceramics of $0.96(K_{0.5}Na_{0.5})NbO_3-0.04SrZrO_3+x$ mol% $ZrO_2$ [KNN-SZ+$xZrO_2$; x= 0~0.10] doped with 0.1 wt% $MnO_2$ by a conventional solid state method. We investigated the piezoelectric properties and microstructures of these disk samples sintered in reduced atmosphere in order to evaluate the possibility of the multilayered piezoelectric ceramics having the base metal such as Ni as a internal electrode. All of these KNN-SZ samples sintered in 3%$H_2-97%N_2$ atmosphere at $1,140^{\circ}C$ exhibit pure perovskite structure irrespective of the content of $ZrO_2$. Meanwhile, the sintering denisty and piezoelectric properties such as $K_p$, $Q_m$ and $d_{33}$ of KNN-SZ samples as a function of $ZrO_2$ content show the maxima ($k_p$=28.07%, $Q_m$= 101.34, $d_{33}$= 156 pC/N) at x= 0.04 and it is likely that there is some morphotropic phase boundary(MPB) in this KNN-SZ+$xZrO_2$ composition system. These results indicate that the ceramic composition is a promising candidate material for applications in lead free multilayer piezoelectric ceramics.

Analysis of Tridentate Schiff Base Ni(II) Complex (세자리 Schiff Base의 Ni(II) 착물의 분석)

  • Chae, Hee-Nam;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.332-340
    • /
    • 1998
  • Tridentate Schiff base ligands, $SIPH_2$, $SIPCH_2$, $HNIPH_2$, and $HNIPCH_2$ were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. Ni(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Ni(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Ni(II) complexes were quasi-reversible and diffusion-controlled as one electron by one step process Ni(II)/Ni(I). The reduction potentials of the Ni(II) complexes shifted in the positive direction in the order [$Ni(II)(HNIP)(H_2O)_3$]>[$Ni(II)(SIP)(H_2O)_3$]>[$Ni(II)(SIPC)(H_2O)_3$]>[$Ni(II)(HNIPC)(H_2O)_3$] and their dependence on ligands were not so high. Consequently the [$Ni(II)(HNIPC)(H_2O)_3$] complex among the synthesized Ni(II) complexes was found to be most stable in the DMSO solution.

  • PDF

Electro-refining Characteristics of PCB-based Copper Anode for the Enrichment of Precious Metals (귀금속 농축을 위한 PCB 기반 양극동의 전해정련 특성)

  • Ahn, Nak-Kyoon;Shim, Hyun-Woo;Park, Kyung-Soo;Park, Jeung-Jin
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.14-22
    • /
    • 2018
  • In this study, scarp of PCB containing copper and precious metals was manufactured as an anode, and electrorefining experiments were conducted on change of $H_2SO_4$ concentration and current density. Through electrolytic refining experiments, the concentration of Cu and slime recovered from each electrode was analyzed, element behavior was confirmed, and current efficiency was also calculated. As the $H_2SO_4$ concentration was increased, the current efficiency and the purity of Cu decreased, but the precious metals in the anode slime were maximally concentrated with 2.0 M $H_2SO_4$. In addition, as the current density was increased, the current efficiency decreased and the purity of Cu showed a tendency to increase, and the precious metals in the anode slime were maximally concentrated with $300A/m^2$. As a result of the pilot scale experiments, the Au content was 8,705 mg/kg, the Ag content was 35,092 mg/kg in the anode slime. As compared with the initial content, Au was concentrated 16 times and Ag concentrated 14 times.

Charge-discharge Characteristics of $LiCoO_2/Li$ Rechargeable Cell ($LiCoO_2/Li$ 2차전지의 충방전 특성)

  • Moon, S.I.;Doh, C.H.;Jeong, E.D.;Kim, B.S.;Park, D.W.;Yun, M.S.;Yeom, D.H.;Jeong, M.Y.;Park, C.J.;Yun, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.79-84
    • /
    • 1993
  • This paper describes the development of lithium rechargeable cell. $LiCoO_2$ is recently recognized as a suitable cathode active material of a high voltage, high energy lithium rechargeable batteries because $Li^+$ ion can be electrochemically deintercalated/intercalated from/to $Li_xCoO_2$. The transition metal oxide of $LiCoO_2$ was investigated for using as a cathode active material of 4V class Li rechargeable cell. $LiCoO_2$ cathode was prepared by using a active material of 85 wt%, graphite powder of 12 wt% as a conductor and poly-vinylidene fluoride of 3 wt% as a binder. The electrochemical and charge/discharge properties of $LiCoO_2$ were investigated by cyclic voltammetry and galvanostatic charge/discharge. The open circuit voltage of prepared $LiCoO_2$ electrode exhibited approximately. potential range between 3.32V and 3.42V. During the galvanostatic charge/discharge, $LiCoO_2/Li$ cell showed stable cycling behavior at scan rate of 1mV/sec and potential range between 3.6V and 4.2V. Also its coulombic efficiency as function of cycling was 81%~102%. In this study the $LiCoO_2/Li$ cell showed the available discharge capacity of 90.1 mAh/g at current density of $1mA/cm^2$ and cell discharge voltage range between 3.6V~4.2V.

  • PDF

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Characteristics of Lead Anodic Films Formed in Aqueous Solutions and Reactivities of Di-iso-butylnitrosoamine in Sea Water (납 산화피막 전극의 특성과 디이소부틸니트로소아민의 전극반응성)

  • Hwang Kum-Sho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 1981
  • The cathodic reactions of lead anodic films formed in phosphoric acid, oxalic acid and sodium hydroxide solutions and the reactivities of Di-iso-butylnitrosoamine (DBNA) in sea water at $15\sim30^{\circ}C$ were studied by means of constant current-potential method. Besides, various contants and thermodynamic quantities obtained in the experiment were also do-scribed to explain the reactivities of protons that entered in the anodic film by being transferred across the metal-oxide interface. The electrode reactions of lead anodic film formed in sodium hydroxide solution in 60mM DBNA+0.5M NaCl did not occur because of complete insulator formed on anodic film. The values of $(\partial\triangle E_{H^+}/\partial T)_{i=const}$, estimated with Bead anodic films formed in phosphoric acid in 60mM DBNA+0.5M NaCl and 60mM $DBNA+6\%_{\circ}$ sea water were $-0.006\;V/^{\circ}C\;and\;-0.005\;V/^{\circ}C$, thus being nearly coincided, but the values of $(\partial E_o/\partial T)_{i=o}$ were $0.002\;V/^{\circ}C\;and\;-0.002\;V/^{\circ}C$, being completely inversed.

  • PDF

A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes (전도성 고분자의 전기전도도 향상 연구 및 이를 이용한 투명전극 응용)

  • Im, Soeun;Kim, Soyeon;Kim, Seyul;Kim, Felix Sunjoo;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.640-647
    • /
    • 2015
  • As the need for next-generation flexible electronics grows, novel materials and technologies that can replace conventional indium tin oxide (ITO) for transparent electrodes have been of great interest. Among them, a conducting polymer, especially poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) is one of the most promising candidates because it is mechanically flexible, inexpensive, and capable of being processed in solution. Currently, there are a lot of research efforts on enhancing its electrical conductivity to the level of ITO or metal electrodes through chemical and/or physical processing. In this review article, we present various additives and pre-/post-deposition processing methods for improving the electrical conductivity of PEDOT : PSS. Some of representative reports are also introduced, which demonstrated the use of conductivity-enhanced PEDOT : PSS as transparent electrodes in electronics and energy conversion.

Switching Behaviour of the Ferroelectric Thin Film and Device Characteristics of MFSFET with Fatigue (피로현상을 고려한 강유전박막의 Switching 과 MFSFET 소자의 특성)

  • Lee, Kook-Pyo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.24-33
    • /
    • 2000
  • Switching behaviour of the ferroelectric thin film and device characteristics of the MFSFET(Metal-Ferroelectric-Semiconductor FET) are simulated with taking into account the accumulation of oxygen vacancies near interface between the ferroelectric thin film and the bottom electrode caused by the progress of fatigue. In our switching model, relative switched charge is 0.74 nC before fatigue, but after the progress of fatigue it reduces to 0.15 nC with the generation of oxygen vacancies. It indicates that the generation of oxygen vacancies strongly suppresses polarization reversal. $C-V_G\;and\;I_D-V_G$ curves in our MFSFET device model exhibit the memory window of 2 V and show the accumulation, the depletion and the inversion regions in capacitance characteristic clearly. The difference of saturation drain current of the device before fatigue in shown by the dual threshold voltages in $I_D-V_G$ curve as 6nA/$cm^2$ and decreases as much as 50% after fatigue. Decrease of the difference of saturation drain currents by fatigue implies that the accumulation of oxygen vacancies with the fatigue should be avoided in the device application. Our simulation model is expected to play an important role in estimation of the behavior of MFSFET device with various ferroelectric thin films.

  • PDF

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.