DOI QR코드

DOI QR Code

Sintering of ZrO2-modified 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 Piezoelectric Ceramics in a Reduced Atmosphere

ZrO2 첨가된 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 압전세라믹스의 환원분위기 소결

  • 강경민 (한국세라믹기술원 전자부품센터) ;
  • 조정호 (한국세라믹기술원 전자부품센터) ;
  • 남중희 (한국세라믹기술원 전자부품센터) ;
  • 고태경 (인하대학교 세라믹공학과) ;
  • 전명표 (한국세라믹기술원 전자부품센터)
  • Received : 2011.04.25
  • Accepted : 2011.06.27
  • Published : 2011.07.01

Abstract

The most widely used piezoelectric ceramics are lead oxide based ferroelectrics (PZT). However, the toxicity of lead oxide and its high vapor pressure during processing have led to a demand for alternative lead-free piezoelectric materials. We synthesized Lead-free piezoelectric ceramics of $0.96(K_{0.5}Na_{0.5})NbO_3-0.04SrZrO_3+x$ mol% $ZrO_2$ [KNN-SZ+$xZrO_2$; x= 0~0.10] doped with 0.1 wt% $MnO_2$ by a conventional solid state method. We investigated the piezoelectric properties and microstructures of these disk samples sintered in reduced atmosphere in order to evaluate the possibility of the multilayered piezoelectric ceramics having the base metal such as Ni as a internal electrode. All of these KNN-SZ samples sintered in 3%$H_2-97%N_2$ atmosphere at $1,140^{\circ}C$ exhibit pure perovskite structure irrespective of the content of $ZrO_2$. Meanwhile, the sintering denisty and piezoelectric properties such as $K_p$, $Q_m$ and $d_{33}$ of KNN-SZ samples as a function of $ZrO_2$ content show the maxima ($k_p$=28.07%, $Q_m$= 101.34, $d_{33}$= 156 pC/N) at x= 0.04 and it is likely that there is some morphotropic phase boundary(MPB) in this KNN-SZ+$xZrO_2$ composition system. These results indicate that the ceramic composition is a promising candidate material for applications in lead free multilayer piezoelectric ceramics.

Keywords

References

  1. Y. Xu, Ferroelectric materials and their applications (North Holland, Amsterdam, 1991) p. 101.
  2. T. Yamamoto, J. Appl. Phys., 35, 510 (1996). https://doi.org/10.1143/JJAP.35.510
  3. P. K. Panda, J. Mater. Sci., 44, 5049 (2009). https://doi.org/10.1007/s10853-009-3643-0
  4. T. Hayashi, J. Tomizawa, T. Hasegawa, and Y. Akiyama, J. Eur. Ceram. Soc., 24, 1037 (2004). https://doi.org/10.1016/S0955-2219(03)00497-7
  5. L. Egerton and D. M. Dillon, J. Am. Ceram. Soc., 42, 438 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
  6. C. F. Buhrer, J. Chem. Phys., 36, 798 (1962). https://doi.org/10.1063/1.1732613
  7. H. Nagata and T. Takenaka, J. Appl. Phys., 36, 6055 (1997). https://doi.org/10.1143/JJAP.36.6055
  8. E. Ringgaard and T. Wurlitzer, J. Eur. Ceram. Soc., 25, 2701 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.126
  9. J. J. Choi, J. H. Lee, B. D. Hahn, W. H. Yoon, and D. S. Park, Master. Resea. Bull., 43, 483 (2008). https://doi.org/10.1016/j.materresbull.2007.02.033
  10. S. Kawada, M . Kimura, Y. Higuchi, and H. Takagi, J. Appl. Phy. Expr., 111401 (2009).
  11. B. C. Sales and M. B. Maple, Phys. Rev. Lett., 39, 1636 (1977). https://doi.org/10.1103/PhysRevLett.39.1636
  12. A. Strawbridge and R. A. Rapp, J. Electrochem. Soc., 141, 1905 (1994). https://doi.org/10.1149/1.2055025
  13. B. Maliw, J. Bernard, A. Benwan, and M. Kosec, J. Eur. Ceram. Soc., 28, 1191 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.004
  14. Y. Guo, K. Kakimoto, and H. Ohsato, Solid State Commun., 129, 279 (2004). https://doi.org/10.1016/j.ssc.2003.10.026