• Title/Summary/Keyword: metal additive manufacturing

Search Result 111, Processing Time 0.024 seconds

Development of Variable Rolling Pressure Device for Bead-Shape Accuracy and Mechanical Property Enhancement in WAAM (Wire Arc Additive Manufacturing(WAAM)에서 적층 비드(Bead) 형상 정확도 및 기계적 특성 향상을 위한 가변 가압장치 개발)

  • Hwang, Ye-Han;Lee, Choon-Man;Kim, Dong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.66-71
    • /
    • 2022
  • Metal additive manufacturing (AM) has revolutionized several manufacturing industries. AM can generate large-scale metal components and produce complex geometries close to net-shapes. WAAM is an AM technology that has garnered considerable interest among industries owing to its economics and relatively high deposition rates. However, the heat accumulation in the weld bead during deposition triggers distortion and residual stress. To address these problems, various methods of interpass pressure rolling systems have been suggested in recent research. In addition, combining the rolling and WAAM processes can mitigate residual stresses. The constant-pressure rolling of the interlayer also affect the microstructure. The coarse microstructure of the as-deposited sample was altered to finer equiaxed grains via these methods. However, the bead-shape accuracy of the interlayer constant-pressure method does not consider the heat accumulation in each layer. Therefore, this study develops an interpass variable pressure rolling system that considers the heat accumulation of each layer. The interpass variable pressure rolling system comprises deposition, detection, pressure, and transport units. Finally, verification tests are performed on the interpass variable-pressure rolling system (at 500 kg) with the WAAM process, and the obtained results are discussed.

Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)

  • Ljunggren, Stefan A.;Karlsson, Helen;Stahlbom, Bengt;Krapi, Blerim;Fornander, Louise;Karlsson, Lovisa E.;Bergstrom, Bernt;Nordenberg, Eva;Ervik, Torunn K.;Graff, Pal
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Background: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. Methods: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. Results: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. Conclusion: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

Stiffness analysis according to support design variables in the metal additive manufacturing process (금속 적층제조에서의 서포트 설계변수에 따른 강성 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.268-275
    • /
    • 2023
  • This paper delves into the crucial realm of support structures in metal additive manufacturing (AM) processes and their direct impact on the stiffness of printed components. With the continuous evolution of AM technologies, optimizing support structures has become imperative to enhance the overall quality and performance of manufactured metal parts. Therefore, in this study, tensile specimens were manufactured using various representative support design variables such as support type, spacing, and penetration depth, and the differences in displacement-load curve were analyzed though tensile test. Using additively manufactured support shaped tensile specimen, the paper presents a comprehensive examination of the effect of support parameters on their stiffness. The findings contribute to advancing the understanding how to design supports to suppress thermal deformation of metal parts during AM process, thereby paving the way for enhanced design freedom and functional performance in the ever-expanding field of AM.

Study for Applicability of Polymer and Polymer Coated Metal Materials within PBF System (PBF 시스템에서 고분자 및 금속 소재 적용성 연구)

  • Kim, Dong Soo;Bae, Sungwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.765-771
    • /
    • 2015
  • In an Additive Manufacturing (AM) system emplying the Powder Bed Fusion (PBF) system, polyamide-12 powder is currently recognized as the general material used. The Polyamide-12 powder's properties include an average particle size of 58 $58{\mu}m$, a density of 0.59 g/cm3, and melting point of $184^{\circ}C$, and can also be to used coat materials for metal powder. For this reason, the sintering process is similar to the polymer powder and polymer coated metal powder process, except during the post-process. The polyamide-12 powder has some disadvantages such as its high cost and the fact that it can only be used for the provided equipment from the maker. Therefore, this study aims to perform the applicability of new material, polymer and polymer coated metal, to the PBF system.

Mechanical Properties of the Laser-powder Bed Fusion Processed Fe-15Cr-7Ni-3Mn Alloy at Room and Cryogenic Temperatures (L-PBF 공정으로 제조된 Fe-15Cr-7Ni-3Mn 합금의 상온 및 극저온(77K) 기계적 특성)

  • Jun Young Park;Gun Woo No;Jung Gi Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Additive manufacturing with 3XX austenitic stainless steels has been widely investigated during a decade due to its high strength, good corrosion resistance, and fair weldability. However, in recently, Ni price drastically increased due to the high demand of secondary battery for electric mobilities. Thus, it is essential to substitute the Ni with Mn for reducing stainless steels price. Meanwhile, the chemical composition changes in stainless steels not only affect to its properties but also change the optimal processing parameters during additive manufacturing. Therefore, it is necessary to optimize the processing parameters of each alloy for obtaining high-quality product using additive manufacturing. After processing optimization, mechanical properties and microstructure of the laser-powder bed fusion processed Fe-15Cr-7Ni-3Mn alloy were investigated in both room (298 K) and cryogenic (77 K) temperatures. Since the temperature reduction affects to the deformation mechanism transition, multi-scale microstructural characterization technique was conducted to reveal the deformation mechanism of each sample.

A Fundamental Study on Polymer/Metal Additive Method using a UV Laser for Consumer-oriented 3D Helmet Products (소비자 지향 3차원 헬멧제품 제작을 위한 UV레이저 기반의 폴리머/금속적층에 대한 기초연구)

  • Kang, Bo-Seok;Ahn, Dong-Gyu;Shin, Bo-Sung;Shin, Jong-Kuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.89-94
    • /
    • 2016
  • Consumer orientation requires that companies understand consumer needs and produce products that meet their expectations. This study proposes a new additive method that creates a polymer/metal bonding layer and thus can lighten the weight of helmets to develop a consumer-oriented 3D printing helmet. The composite solution is experimentally prepared with copper formate and a photopolymer resin. Stereolithography apparatus and photothermal reactions are introduced to fabricate an adhesive hybrid layer of copper metal and polymer. A UV pulse laser with a 355 nm wavelength was installed to simplify this process. Resistance, adhesion, and accuracy were investigated to evaluate the properties of the layer produced.

Fabrication of Low Density Sintered Stainless Steel Filter

  • Seok, Se-Hoon;Park, Dong-Kyu;Jung, Kwang-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.611-612
    • /
    • 2006
  • In a manufacturing technique of the sintered filter, pressureless sintering method has good permeability, it is not need the binder and lubricant used on compacting process, so it has little contamination and it is easy to control the pore size and shape but the mechanical strength is low relatively and it is difficult that parts of complicate form are manufactured. In the case of manufacturing the filter by press and sintering method, in order to be satisfactory characteristic of un-pressed filter, in this study sintered metal filter fabricated by using 30-40mesh stainless steel 316L powder and additive agents. Porosity and structure of pores, permeability and mechanical strength of the sintered filter were investigated with the variation sintering conditions. Porosity was nearly constant about $60{\sim}70%$, density, permeability and mechanical strength were changed markedly with quantity of additive materials and sintering conditions.

  • PDF

A Study on Cladding on an Inclined Cylindrical Surface using DED Additive Manufacturing (DED 적층 방식을 활용한 원통면 경사 적층에 관한 연구)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.91-97
    • /
    • 2022
  • The Directed Energy Deposition (DED) is a representative metal additive manufacturing method. Owing to its strong point of repairment, its application is gradually spreading in aerospace applications, power generation, military components, and mold making. 5-axis cladding is needed to repair damage, such as wear and scratches on cylindrical surfaces to circular-shaped parts, including sleeves and liners. Furthermore, the condition of cladding on inclined parts must also be considered to prevent interference between the nozzle and the part. In this study, the effects of changes in scanning speed due to the 5-axis control system and differences from the height of laser beam irradiation due to inclination are evaluated among the items that should be additionally considered in 5-axis cladding compared to 3-axis cladding. Moreover, the trends of the width and height of the clad are identified by different tilting angles via single line cladding. Lastly, cladding methods on cylindrical surfaces at various angles are proposed to enhance the clad quality and post-processing efficacy. These results can be applied with 5-axis cladding on inclined surfaces, including cylindrical surfaces.

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning (X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류)

  • Kim, Eun-Ah;Kwon, Se-Hun;Yang, Dong-Yeol;Yu, Ji-Hun;Kim, Kwon-Ill;Lee, Hak-Sung
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.